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Resumo Estendido

A obtenção de imagens de ressonância magnética de alta qualidade é uma tarefa árdua

devido a maneira de obtenção do sinal pelas máquinas de ressonância magnética e pela

complexidade dos tecidos analisados, tornando praticamente imposśıvel a obtenção de todas

as medidas do objeto de estudo em um exame de breve execução. Para lidar com este

problema, diversas técnicas foram aplicadas para gerar imagens de alta qualidade com

quantidades menores de medidas. Entre as técnicas usadas, Compressed Sensing (CS) tem

sido a técnica com melhores resultados e mais aprofundada no contexto de reconstrução

de imagens de ressonância magnética nas últimas duas décadas. Por sua alta capacidade

de lidar com sinais com representações esparsas, CS é capaz de reconstruir imagens de

ressonância magnética com alt́ıssima qualidade com proporções de medidas muito menores

de amostragens, como 15%, 20% do total de medidas contidas na imagem utilizando técnicas

de subamostragem.

O desempenho do CS evoluiu com as contribuições de uso de filtros esparsificantes e

com o uso de informação à priori [1, 2, 3], entre outras aplicações que foram desenvolvidas

seguindo a mesma linha de aplicação como por exemplo o uso de informação à priori de

forma não determińıstica [4]. A extensa aplicação do CS dentro do contexto de exames de

ressonância magnética foi uma das grandes motivações de apresentarmos nesse trabalho uma

técnica inédita e que gera resultados promissores com reconstruções melhores nas métricas

avaliadas e com tempo de execução inferior ao de algoritmos que utilizam informação

à priori determińıstica. Nossa técnica é nomeada CoDePPI, do inglês Informação à

Priori Probabiĺıstica Dependente do Contexto, e traz uma caracteŕıstica nova em termos

de informação à priori que é o entendimento que regiões diferentes de um objeto variam em

termos de movimento de maneiras diferentes em um exame de ressonância dinâmico. Isto é,

em um exame dinâmico de ressonância card́ıaco a região do coração obviamente vai estar se

movendo entre frames em uma certa velocidade, mas outras regiões do corpo do objeto de

estudo também se movimentam e com velocidades diferentes. Levando essa informação de

contexto de movimento em regiões diferentes da imagem, propomos neste trabalho utilizar

uma técnica não determińıstica de informação à priori com diferentes variâncias para cada

região de acordo com o movimento. Dessa forma, cada região é representada por diferentes

ńıveis de confiança de que aqueles pontos extráıdos pelo algoritmo de informação a priori

fazem parte de uma posição suporte (posições de ṕıxeis que se manteriam estáticos entre

frames).

Assim, desenvolvemos uma série de experimentos a fim de levantar conhecimento sobre as

técnicas utilizadas em CS para reconstrução de imagens utilizando técnicas de pré-filtragem

e de informação à priori, e posteriormente avaliamos os resultados de cada técnica entre

elas para diferentes modalidades de imagens de ressonância magnética e também utilizando

diferentes maneiras de subamostragem para explorar como os resultados variam em cada
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situação. Nos experimentos são levadas em consideração imagens simples como fantomas

Shepp-Logan, cortes sagitais da cabeça e um estudo de caso de ressonância dinâmica de

corte sagital do tórax.

Os resultados dos nossos experimentos mostram que o uso de pré-filtragem e de

informação à priori são muito vantajosos para reconstrução de imagens com a teoria de

CS e são prefeŕıveis à não utilização dos mesmos. Além disso, nossos testes com o método

proposto CoDePPI revela que o uso da nossa metodologia de extração de informação à

priori é mais robusta e gera melhores resultados quando comparada com as outras técnicas

para exames de ressonância magnética dinâmica. Não foram feitos experimentos com outras

modalidades, mas os resultados nos levam a crer que essa técnica também geraria os melhores

resultados em outras situações como extração de informação à priori entre frames de uma

ressonância axial do crânio que compartilha várias posições suportes entre frames.

Durante a execução desta pesquisa, nós também desenvolvemos outras hipóteses de

melhorias para o processo de extração de informação a priori análogas à técnica do CoDePPI

com uso de técnicas mais recentes de aprendizado de máquina. Dentro dessas hipóteses, duas

se destacam: a possibilidade da utilização de algoritmos generativos como as Generative

Adversarial Network (GAN)s para geração de pontos de posição suporte de forma automática

e a utilização de técnicas de visão computacional para segmentação automática das regiões

com movimentos diferentes que é utilizada na aplicação do CoDePPI. Assim, sendo duas

possibilidades de melhoria no contexto do nosso algoritmo apresentado, trouxemos nesta

pesquisa os fundamentos teóricos para a continuação dessa pesquisa e validação dessas

hipóteses em uma tese de mestrado. Além da revisão bibliográfica levantada sobre o tema,

elaboramos também um experimento focado especificamente em geração de sinais de imagem

a partir da arquitetura GAN, onde mostramos a viabilidade de gerar números manuscritos do

conjunto de dados MNIST. Dessa forma, essa continuação da pesquisa é também resultado

da nossa metodologia e experimentação no peŕıodo de implementação do algoritmo estado

da arte em extração de informação a priori CoDePPI.
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Abstract

Obtaining images from a Magnetic Resonance Imaging (MRI) scan is a challenging

task due to the arduous process of obtaining the measurements from the machine and it

is practically impossible to collect all the signal of a subject for a given scan. To mitigate

this issue, Compressed Sensing (CS) based algorithms have been widely used in academia

to achieve high-quality images with much fewer measurements needed. CS is capable of

reconstructing MRI images at a sampling rate much lower than the Nyquist rate whilst

maintaining sufficient quality.

Since its introduction, CS has been significantly improved by the usage of

preprocessing techniques like sparsifying filters and prior information, that are focused

on improving the quality of the input data used in the CS algorithm. With that in mind,

we have improved the prior information theory by utilizing non-deterministic support

positions as well as multiple variances for the regions in the image that contain different

levels of motion. This is the intuition behind our proposed method Context-Dependent

Probabilistic Prior Information (CoDePPI) which parts from an image segmentation

based on the motion of an image to address the different levels of confidence that a

particular region in the image is part of a support position in other frames of a dynamic

MRI. This makes our method more robust by minimizing the introduced error and by

maximizing the probability to accurately use values from support regions.

Our proposed method has shown better results in MRI reconstruction when compared

to the classical prior information algorithm and non-prior information usage. Our method

was evaluated in a dynamic cardiac MRI where we had four different motion levels

regarding the movement in internal organs throughout the frames in the exam.

Additionally, this research also produced Deep Learning (DL) content intended to

be used in the improvement of CoDePPI by either utilizing Generative Adversarial

Network (GAN)s for support positions generation from an image or by automatizing

the segmentation step with a motion-detection model. A generation experiment was

done to validate the usage of GANs for signal generation for future experimentation with

MRI signal.
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1 Introduction

In this thesis, we introduce Context-Dependent Probabilistic Prior Information

(CoDePPI), the best prior information extraction algorithm for Magnetic Resonance

Imaging (MRI) reconstructions with the use of the Compressed Sensing (CS) theory. Our

method CoDePPI takes advantage of motion information across frames in a dynamic

MRI to weigh the confidence that the extracted positions are effectively part of a

support structure, that is, reducing the noise introduced by applying prior information.

Our method achieves the highest reconstruction quality when compared to other prior

information strategies and also is faster to compute than classical prior information

due to its implementation that lacks the need to perform array elements positions

lookup. In our experiments, our approach provides better reconstruction in terms of the

evaluated metrics: Signal-to-Noise Ratio (SNR), Peak Signal-to-Noise Ratio (PSNR),

Structural SIMilarity (SSIM), Normalized Mean Squared Error (NMSE), Mean Squared

Error (MSE).

Achieving higher quality with a reduced number of samples allows faster exam

procedures, making MRI cheaper, faster, and more convenient for both patients and

clinics, which is our ultimate goal.

1.1 Context

MRI is a widely used imaging modality in medical practice because of its great tissue

contrast capabilities, it has evolved into the richest and most versatile biomedical imaging

technique today [14], making MRI the best option for medical imaging whenever it is

possible to use.

However, like everything in life, there is a trade-off to consider when using MRI.

Typically, reconstructing an MRI is an ill-posed linear inverse task (a problem that has

either none or infinite solutions in the desired class). Problems of this nature impose

a trade-off between accuracy and speed [15]. The information obtained from Magnetic

Resonance (MR) is commonly represented by individual samples in the k-space, which

1



translates to the Fourier transform of the image to be reconstructed [1]. The sparse nature

in MR undersampling makes CS theory a liable technique to use when reconstructing

MRI, hence we here elaborate a novel CS prior information approach for better results.

CS has been for years the state-of-art technique in MRI reconstruction and has been

improved later by the use of sparsifying pre-filtering techniques and prior information [3,

2]. CS uses the premise that given a signal with a sparse representation in some known

domain, it is possible to reconstruct the signal using limited linear measurements taken

from a non-sparse representation.

There is still room for improvement in signal processing approaches for MRI

reconstruction like the one novel implementation of the prior information algorithm that

we present in this thesis, but ultimately, the task of reconstructing a signal from very few

extracted measurements can be most improved with Machine Learning (ML) techniques.

Many times, classical approaches serve as the starting point where ML models should start

tackling the problem. In this case, we propose a novel prior information implementation

and also present the fundamentals for the Deep Learning (DL) continuation along with

investigation regarding the possibilities to improve the quality of this prior information

even more by utilizing the so-called Generative Adversarial Network (GAN)s.

ML methods have been utterly developed and improved recently with the use of

higher computing power derived from the invention of Graphics Processing Units (GPU)

and other hardware improvements, allowing Artificial Neural Networks (ANN) to come

to practicality. These ANN models, often referenced as DL, have become the state

of art in various areas, such as Computer Vision (CV), Natural Language Processing

(NLP), Recommendation Systems, amongst other fields [16, 17, 18]. These fast-paced

developments led to improvements in medical data processing using DL as well. ML

techniques can be used in several different manners to improve medical analysis, here we

focus on applying GAN in the process of attaining improved prior information to feed the

CS algorithm obtaining higher signal-to-noise ratios and faster computation procedures.

1.2 Scientific Problem Definition and Proposal

MRI is great for high-quality tissue images and definitely one of the highest image-

quality medical imaging modalities, but there are some drawbacks: MRI exams are often

very long and require the patient to be in a static position throughout the whole process,

this makes the exam challenging for patients that have difficulties in keeping a still

position for several minutes. Another intrinsic complication in MRI procedures is that

it is extremely complicated to extract images from moving tissue like a beating heart or
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flowing blood veins as that would require an enormous amount of samples, which with

current technologies used in clinics is not viable. Algorithms that reconstruct MRI try

to tackle this sampling issue by producing the best possible quality images from the least

amount of samples collected, making the exams faster and less sample-dependent.

CS algorithms have been the state of art in MRI reconstruction for the past few years

and now with the advances of DL, new techniques are being produced taking advantages of

how ANNs are powerful in imaging processing, especially Convolutional Neural Network

(CNN)s and more recently, GANs are becoming the new state of art techniques in several

computer vision areas. Most CS contributions without the use of machine learning cite

the usage of sparsifying pre-filtering techniques and prior information that have been

proven to improve efficiency and achieve better reconstructions [2, 3]. More recently, the

contributions in MRI reconstruction have been more focused on deep learning approaches,

with some architectures using CS along ANNs [19, 20, 21, 22, 23, 24].

CS reconstructions often use a preprocessing step called prior information which

focuses on the extraction of support positions – regions that normally would not move

from a frame to another – and when these positions are fed to the `p-minimization

algorithm (one of the possible ways to solve), the reconstructed image quality is improved

significantly [2, 1]. Prior information is normally generated by mathematical approaches

like filtering and thresholding on the images and can be leveraged from previous and

next frames in the same MRI exam to even medical records from previous scans. These

information extraction procedures oftentimes are restricted to few frames and do not

take into account the nature of organs and tissues structures. Another observation from

this classical prior information extraction is that these support positions are binary, they

either are part of a support position or they are not. One could think that using a

non-deterministic approach to this technique would likely correct some errors introduced

in-between frames and that is exactly what happens when the extracted prior information

is treated as a probabilistic support position [4]. Although non-deterministic do perform

better than deterministic ones, they still do not consider the different level of confidence

in each region of the subject – that is, some regions are different in terms of motion, hence

they should be treated as different levels of confidence, which is right what we investigate

within this work.

Additionally, DL models are constantly improving image reconstruction quality like

the ones mentioned in [5, 6] and this implies that there is a lot of room for improvement

towards MRI reconstruction and analogously, we believe that prior information can be

even more improved by the usage of GANs for prior information extraction and therefore,

we also documented our research in such contexts aiming towards a more detailed

continuation of this research project in a master’s degree, where more experimentation
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can be done to validate our hypothesis.

1.3 Objectives

1.3.1 General Objective

Ultimately, the main goal behind this research can be roughly summarized in two

intended contributions: faster MRI exams and better MR image quality. To achieve

this goal, we have set minor goals that are described more deeply further. In terms

of research, our goal is to introduce a novel context-dependent probabilistic prior

information algorithm utilizing the different motions across the frames in a dynamic

MRI for higher confidence support position extraction. The expected outcome of this

algorithm is to improve reconstruction in quality and in runtime directly impacting both

our main goals. Additionally, we also present fundamentals and preliminary experiments

for a sequel to this study using DL techniques like GANs.

1.3.2 Specific Objectives

In order to achieve the general objective described above, we have set the following

specific goals:

• Implement all the CS procedures in Python.

• Implement direct and indirect CS MRI reconstruction algorithm using

undersampled k-space measurements.

• Implement and validate the efficiency of the prior information technique.

• Demonstrate experiments with CS using pre-filtering and classical prior

information.

• Demonstrate our CoDePPI algorithm and evaluate against other prior information

techniques.

• Present a case study with a dynamic MRI using the CoDePPI algorithm to show

how our technique impacts real-life exams.
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2 MRI Concepts and Compressed Sensing State

of Art

2.1 Magnetic Resonance Imagery

MRI is an indirect process that produces cross-sectional images with high spatial

resolution from nuclear magnetic resonances, gradient fields, and hydrogen atoms of

the subject’s anatomy [25]. The acquisition of these measurements is performed by a

measuring instrument called receiver coil and it can be done by using one receiver coil or

in some cases with multiple coils [5, 6]. These receiver coils are placed in proximity to a

specific region in the subject to be imaged. During the imaging process, the MRI machine

generates a sequence of spatially and temporally varying magnetic fields which induce

the body to emit resonant electromagnetic response fields which are then measured by

the receiver coil [5, 6].

2.1.1 K-space

The k-space is the output generated by the MRI machine scan after extracting

measurements from a given subject tissue. The k-space is represented in the spatial

frequency in two or three dimensions of a subject and may also be referred to as the Fourier

space. Its representation contains an implicit sparsity that is exploited when performing

undersampling [26] and reinforces the usage of algorithms like CS for MRI reconstruction

as CS depends on signals that have a sparse representation on an orthonormal basis [27].

In essence, the k-space is the signal representation in the spatial frequency domain.

5



Figure 2.1. Single-coil k-space
points from the fully-sampled
knee. Source: [5, 6]

Figure 2.2. Single-coil fully-
sampled knee spatial image.
Source: [5, 6]

2.1.2 Undersampling

The time required to acquire all the measurements responses from every single

atom in a subject would be extremely high, and problematic to everyone involved

(patients, physicians and clinics). The way machines can do faster MRI is by performing

undersampling, also referred to as subsampling and sampling, when scanning the subject.

Undersampling is performed by giving the machine a known prescribed path in

which it will extract measurements from the multidimensional k-space representation.

This allows machines to collect only a fraction of data measurements needed for image

reconstruction hence speeding up the data acquisition process without critical quality

loss.

There are some undersampling patterns to use and each has its benefits depending

on several parameters, such as the subject’s region extraction, the algorithm used for

reconstruction, acquisition time.

In the figure below we can see some of the most used patterns. In this research, we

will focus mostly on the radial, spiral and cartesian undersampling method which we

later use in our experiments.
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Figure 2.3. Undersampling patterns. (a) Cartesian undersampling, (b)
radial undersampling, (c) spiral undersampling, (d) isolated samples in
the k-space, according to the realisation of a random process [7].

In MRI, the undersampling techniques are often used to acquire η elements where

η < 2η < N , violating the Nyquist criterion.

2.2 Compressed Sensing

2.2.1 Introduction

Compressed sensing, often referred to as Compressive Sensing, represented a major

breakthrough in signal processing when it was introduced by Donoho, Candès, Romberg,

and Tao in 2004 [27, 28, 29] since it allows sampling at a rate much lower than the

Nyquist-Shannon’s theorem: the sampling signal rate must be at least twice the maximum

frequency present in the signal (Nyquist rate).

The idea behind the CS theory was inspired by questioning the necessity of extracting

large portions of samples when many of these very samples are discarded, exposing the

inefficiency of trying to gather all the samples from the signal.

“Why go to so much effort to acquire all the data when most

of what we get will be thrown away? Can we not just directly

measure the part that will not end up being thrown away?” [27]

CS is a powerful algorithm that implements a novel technique for the acquisition of

signals of sparse or compressible nature. CS theory provides an accurate reconstruction

of unknown sparse signals from underdetermined linear measurements l. CS parts from

the principle that if given x, a digital image or signal has a sparse representation in an

orthonormal basis (e.g. wavelet, Fourier, Discrete Cosine Transform (DCT), etc), then
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the N most important coefficients in that expansion allow reconstruction with `2 error

O(N1/2−1/p) [27].

A signal x is known to have a sparse representation if there is a deterministic and

invertible matrix TN×N so that the transformed vector x̂ is composed of most of its N

components equal to zero x̂ = Tx [1].

MRI l extracted measurements from the MR scanner correspond to some of the

coefficients in x̂ = Tx. In the MRI context, the so-called k-space is a sparse representation

of the image to be reconstructed in the frequency domain and when it is undersampled,

the Nyquist criterion is violated [26]. This occurs due to the fact that it is extremely

expensive and practically impossible to acquire at l = 2η, as suggested by the Nyquist

criterion [2]. These are favourable conditions for the CS theory, hence all thousands of

papers citing the usage of CS for MRI reconstruction and state-of-the-art results involving

any application of CS for MRI reconstruction.

Given an N -dimensional complex discrete-time signal x, that is compressible by a

linear transformation with a sparse representation, it is said that this signal x can be

fully reconstructed from an l-dimensional vector of measurements b defined as b = Mx,

where M has shape l × N . Accordingly, the same equation can also be represented as

b = MT−1x̂ and then as MT−1x̂ − b = 0. For CS theory to successfully perform the

reconstruction of the signal x, this signal needs to be sparse as mentioned before and

must also conform with the incoherence condition that says that sparse signals in the

transformed domain must be well distributed in the measurements domain – that is, the

rows of the measurement vector b and the domain defined by T must be incoherent [30].

As the system in the MRI scenario is underdetermined, l << N , the system admits

infinite solutions, therefore additional information regarding the nature of the signal is

needed. In CS theory, this is accomplished by using an optimization algorithm with

restrictions that exploit the sparsity in the domain defined by T .

The Restricted Isometry Property (RIP), introduced by Candès and Tao [29] confirms

that the solution to the reconstruction as an optimization problem has guaranteed

stability if the measurement matrix b satisfies the RIP property with respect to the

sparsifying transformation [1]. For a signal x with η non-zero elements in the sparse

representation, the matrix A = MT−1 is said to satisfy the RIP if and only if for any

vector v with dimension N and a maximum of 3η non-zero elements,

1− ε ≤ ‖MT−1v‖2
‖v‖2

≤ 1 + ε, (2.1)
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where ε is a tolerance constant that must use lower values in order to guarantee higher

stabilities in the reconstruction procedure.

2.2.2 Reconstructing with the `p Regularization

The `p-minimization is an optimization algorithm that is a rather common approach

used in reconstruction procedure, especially the `1 regularization, as it often produces

better results.

Given the measurements vector b, the sparsest solution x̂ must be found, which

naturally leads to an optimization problem and could be solved by using the `0-

minimization for instance,

x̂∗ = arg min ‖x̂‖0 ,

s.t. MT−1x̂ = b,
(2.2)

The solution to 2.2 is extremely resource-consuming and is not viable in most

practical situations, MRI reconstructions included. Another possibility is to use the

`1-minimization, which is used throughout all the experiments in this thesis and is

represented as

x̂∗ = arg min ‖x̂‖1 ,

s.t. MT−1x̂ = b.
(2.3)

The `1 approach is a good alternative to the MRI reconstruction problem being an

optimization of the convex nature and it can be solved by iterative calculation. Another

solution is the `p minimization which is represented by

x̂∗ = arg min
1

2
‖x̂‖pp ,

s.t. MT−1x̂ = b.
(2.4)

This optimization method was chosen for our experiments due to the better

reconstruction quality it provides with the required measurements. Reconstructing MRI

images is a non-convex problem that can be solved with different techniques like the

iteratively reweighted least squares (IRLS). In CS theory, the `p represents the `1.
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2.3 Prior Information

The application of prior information in MRI reconstruction was first introduced with

the general idea of exploiting the common information shared throughout sequential

frames acquired from the MR scan [1, 2]. This would not only improve the reconstruction

of MR images but would also make dynamic scans more feasible as large portions of the

image could be used as prior information for the reconstruction of future and previous

frames. The MRI exam is known for requiring the patient to stand still throughout the

exam so that there are not grand differences between different frames.

A dynamic cardiac MRI for instance is naturally a situation that will be impossible

for the subject to be still throughout the exam, as the heart will keep beating constantly;

hence increasing the level of difficulty for the reconstruction. Although a dynamic

cardiac exam has this innate motion characteristic, it also contains crucial portions of

support regions shared between most of the frames that can be exploited to improve

the reconstruction. These support regions are essentially structures that will hold –

practically – the same position therefore, these are elements in the image that share

the same information and prior information application exploits this nature by slightly

reducing the number of variables in our underdetermined system in the CS algorithm.

2.3.1 Prior Information Retrieval

To leverage prior information for a frame – as it was first introduced –, one could

apply edge detection filters to first generate support position candidates and then extract

the position of these edges and apply a τ factor to increase the value in these specific

positions when running the CS algorithm, based on an IRLS method [2]. In practice,

this operation tells the `p-minimization that these values with a higher magnitude are

likely values in a support position Φ. These procedures are extensively explored in the

experiments documented in the experiments chapter.

Prior information was then introduced as a deterministic approach – whether the pixel

was a support position or it was not. This approach, of course, raises a few questions:

what if the subject moved slightly and the support position has been moderately altered?

What if the next frame contains support positions that are getting narrower or wider?

E.g. Brain MRIs, where the cranial structure’s diameter is increased or decreased frame-

by-frame. Prior information theory responds to these question with a high tolerance

impact in the reconstruction. It has been documented that using the same amount

of mistaken support positions and correct ones will improve SNR in the next frame’s
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reconstruction [2].

Alternatively, a non-deterministic approach for prior information generation was

proposed to achieve more robustness based on more accurate information. This technique

uses a Gaussian – or normal – distribution with fixed covariance matrix values for each

pixel of the support positions in the space domain instead of a deterministic 0 or 1 value.

Using probabilistic support positions improves reconstruction metrics as shown in [4].

The images below are an example to represent a 15% deterministic prior information

of a sagittal head MR scan from filters of horizon, vertical and diagonal borders detection.

Figure 2.4. Masks with 15% points of deterministic prior information extraction.

Additionally, these very same Φ positions have already been represented in terms

of probabilities [4] and they look slightly different, where the central positions of the

detected edges are greater in magnitude and the edges are smaller, representing different

levels of confidence. Below we display what our horizontal low-pass filtered sagittal head

image would look like in the non-deterministic approach.
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Figure 2.5. Non-deterministic prior information for the sagittal head image.
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As expected, the borders look very blurry and thicker than the ones presented in

the deterministic prior information 2.4. This is useful because it allows for noise/error

smoothing between frames and slices.
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3 CS MRI Reconstruction Experiments using

Prior Information and Preliminary Generation

Experiment

The following experiments have the purpose to elucidate how the application of pre-

filtering and different prior information strategies impact MRI reconstruction in different

scenarios. Later, we present a signal generation experiment with GANs mitigating the

usage of this technology in further research continuation. The generation test is a step

before implementing these neural networks for prior information leverage on MRI scans.

3.1 Metrics and Evaluation Criteria

All the documented experiments below were evaluated using a set of metrics widely

used in the MRI context to analyse image reconstruction quality. The metrics and their

respective meanings are:

• PSNR: represents the ratio between the power of the maximum magnitude value

in the image and the power of corrupting noise that impacts the fidelity of the

reconstruction. PSNR is represented in dB and the greater it is, the greater image

quality perceived.

• SSIM: ranges from 0 to 1 and measures the similarity between two images. The

closer to 1, the more the two signals are similar.

• SNR: similarly to the PSNR, the SNR measures the level of the desired signal to

the level of noise in the reconstructed signal. It is also represented in dB and the

greater, the better.

• MSE: measures the mean of the squares of the errors – that is, the difference

between the reconstructed signal and the ground truth. The lower the error, the

better the reconstruction.
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• NMSE: computes the MSE normalized by signal power. NMSE is widely used in

research papers and is the primary measure of choice in fastMRI dataset, but it

contains a certain bias towards smoothness instead of sharpness [5, 6].

3.2 System Specifications

All the mentioned experiments were conducted within the same operating system

environment and with the same hardware. We used Linux Manjaro with an Ubuntu

docker image atop. For more transparency, we here list the hardware and software used

in this research:

• CPU: AMD Ryzen 7 3700X 16 threads at 3.600 GHz

• Memory: 16GB at 3200 MHz

• OS: Ubuntu 20.04 LTS focal x86 64

• Kernel: 5.4.114-1-MANJARO

• Python: 3.8.5

• GCC: 9.3.0

• NumPy: 1.20.2

• SciPy: 1.5.2

More specific information can be found in the CoDePPI GitHub repository or by

directly contacting the author and maintainer gabrielziegler3@gmail.com.

3.3 1-D Direct vs Indirect `1-Minimization

`1-minimization admits both direct and indirect approaches, in which there is the

accuracy x resources trade-off. The direct method often produces a higher quality

reconstruction but is very memory consuming, whilst the indirect method loses a bit

of quality but requires much less memory to compute the equations system.

To visualize this trade-off, we have created 200 random 1-D arrays ranging values

from the standard normal distribution and have taken 10% of data points randomly to

reconstruct the whole signal using different L sizes.
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L is the number of linear measurements extracted from the 1-D signal. The figure

below displays the first 10 signals created in the standard normal distribution range.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

−3

−2

−1

0

1

2

3
variable

Signal 0
Signal 1
Signal 2
Signal 3
Signal 4
Signal 5
Signal 6
Signal 7
Signal 8
Signal 9

Element

Va
lu

e

Figure 3.1. First 10 random 1-D signals

3.4 2D Compressed Sensing Reconstruction with Pre Filtered

Signal

In order to test the sparsifying method of applying pre-filtering processing to the

input measurements in the k-space for 2D images, we have conducted experiments some

different images. A simple 2D image of the well-known Shepp-Logan phantom [31] for

baseline is used for the first experiment and two MR (sagittal head slice and a single-coil

knee obtained from the NYU fastMRI Initiative database (fastmri.med.nyu.edu) [6, 5])

images that are considerably more complex than the phantom for the reconstruction task.

Within these images, SNR improvement gained by applying sparsifying pre-

filtering [1, 3] can be best visualized and confirmed for these different scenarios.

3.4.1 Spiral Undersampling

We then created a phantom image with a shape of 256×256, hence having 65536 data

points, using the phantominator python module. Then, we simulated an undersampled

phantom image by applying the spiral undersampling pattern achieving approximately

30.95% of data points from the Fourier space which resulted in a matrix with 20285 non
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zero elements. The same procedure was applied to the sagittal head image.

Figure 3.2. A spiral undersampling trajectory with 30.95% data points.

3.4.2 Pre Filtering Sparsifying Transform

For the pre-filtering step, f = 3 is used where f is the number of filters applied to

increase sparsity in the signal to be reconstructed. The filters are all 2× 2 matrices and

increase the sparsity in the signal from different perspectives, using more filters increases

the ability to sparsify the signal. The 3 filtered images are then composed into one single

image containing the highest gain each filter could provide given a single pixel in the

image [3]. The different filters used can be better visualized from the figure below.

Figure 3.3.
2-D High pass
horizontal filter.

Figure 3.4.
2-D High pass
vertical filter.

Figure 3.5.
2-D High pass
diagonal filter.

The pre-filtering method is evaluated against the zero-fill reconstruction method (used

as a dummy baseline) and an `1-minimization method without pre-filtering with the very

same parameters used in the pre-filtering `1-minimization.
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3.5 Dynamic Sagittal Cardiac Case Study

In this experiment, we take a dynamic sagittal cardiac MRI where the patient’s heart

is continuously beating and some other internal organs are moving throughout the exam,

making each frame slightly different from one another, despite the MR scan be still. This

is the real case where our technique can provide improved and faster results.

We start by extracting the first 10 frames from the exam video. Then we crop all

frames to 192× 192 of shape in order to remove the borders from the video and focus on

the important parts of the image. Our reference image looks like this:

Figure 3.6. First frame from the dynamic cardiac MRI exam.

The first frame is the one that we do not possess any prior information from previous

frames, hence we perform an `1-minimization with the pre-filtering step with the same

parameters and conditions established in the previous experiments, but without prior

information. From the second frame onwards, we will always have the previous frames to

look into and extract prior information from support positions. In our experiments, we use

the first frame’s reconstruction to generate our Φ positions for both the deterministic and

context-dependent probabilistic prior information strategies used in the reconstruction of

the next frame. This allows the second reconstruction to take advantage of the knowledge

available from the first reconstruction and creates a better quality reconstruction.
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3.5.1 Radial Undersampling

For this experiment, we decided to use a radial undersampling mask with 21.20% of

all the data points, concentrating most of the measurements in the low-frequency regions

aiming to simulate the undersampled k-space provided by the MR scan.

Figure 3.7. Radial undersampling trajectory with 21.20% of data points.

Following the same procedure as the other experiments, we also perform a zero-filled

reconstruction with our undersampled k-space measurements vector b in order to generate

a baseline to compare with our latter results.

3.5.2 Deterministic Prior Information

The prior information step consists of creating f 1-D arrays with the Φ positions

of non-zero elements from the filtered images generated with the previous frames’

reconstructions. These Φ positions are then multiplied by a τ factor of 10 at each iteration

in our `1-minimization.

For both deterministic and context-dependent probabilistic prior information we have

used the proportion of 6%, which provided the best results in both prior information

strategies for this specific scenario in our parameters fine-tuning experiments.
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3.5.3 CoDePPI: Context-Dependent Probabilistic Prior Information

We propose a novel approach to the non-deterministic prior information extraction

by using knowledge about regions in the image that are more dislocated than others to

apply different variance in the normal distributions procedure. When moving from a

frame to another, portions of the image are dislocated in different degrees, that is, some

regions will be more likely to contain support positions than others. We call this approach

CoDePPI: Context-Dependent Probabilistic Prior Information.

By taking this motion information into account, we segmented the image into four

levels of movement – high, medium, low and close-to-zero movement. The regions labelled

as high movement receive a covariance matrix with a higher variance; thus assigning this

region as a low-confidence support position, whilst the regions labelled as low or close-to-

zero receive a Gaussian distribution with low variance, representing it as a highly likely

support position prior information. Similarly, the medium labelled positions are assigned

an intermediate variance for intermediate confidence.
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Figure 3.8. Example of Gaussian distributions with four different levels of
variances.

In this section, we focus on the dynamic sagittal cardiac MR and produce a manual

segmentation for this case study specifically, but this could be generalized to other types

of dynamic scans. The segmentation step focuses on the different motion contexts related

to the exam and subject. In this case, we have a sagittal cardiac MR exam in which the
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subject’s regions with most motion visually detected were the heart region and digestive

system, hence these portions of the image are marked as high and medium in terms of

motion respectively.

Figure 3.9. Fully-sampled
cardiac MRI frame.

Figure 3.10. Manual
segmentation: the lighter
the colour, the more pixels
are dislocated in the region
throughout frames.

Identifying these different regions gives us the possibility to apply different weights

for each region in the image. The regions labelled as high movement receive a covariance

matrix with a higher variance; thus assigning this region as a low-confidence support

position, whilst the regions labelled as low or close-to-zero receive a Gaussian distribution

with low variance, representing it as a support position prior information. A weights

matrix is generated by computing an element-wise Gaussian distribution with the

according covariance matrix on the segmented mask and then adding these distributions

each iteration, forming accumulations on the centre of several support positions. The

regions labelled high are specifically multiplied by −1 so that the confidence is represented

with negative magnitudes. After computing the weights matrix, we expect to see

distinguishably different magnitude levels, representing different confidences.
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Figure 3.11. 2D weights
matrix.
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Figure 3.12. 3D weights matrix
visualization.

Inverting the normal distributions in regions annotated as high is key to our

implementation due to a bias element-wise addition applied after the normal distributions

step. The latter step is used to normalize the magnitudes in our weight matrix between

some constraints. As observed in the previous figures, the generated weights matrix

contains elements ranging from values below 0 to values over 1× 106, we then apply a

customized normalization function with a τ factor and a bias constant to re-weight the

values in this matrix ω(x) = (x � maxxi) ◦ τ + β, where ω is our re-weighted weights

matrix, x is the weights matrix, τ is the factor by which the values are multiplied. The

x division by the maxxi, τ multiplication and β addition are all element-wise operations

and are often referred to as Hadamard operations. The bias term defines minxi for every

xi in the regions labelled as medium, low and close-to-zero movement.

At this point, the weights matrix is computed and re-weighted, so now this matrix

is multiplied element-wise with each of the Φ masks created in the same fashion as the

deterministic prior information, generating a weighted phi mask κ as in κ = ω ◦ Φ.

After this operation, our Φ positions no longer holds deterministic values, but rather

dispose of different levels of importance due to the weights ’ values.
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Figure 3.13. 2D weights matrix
visualization.
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Figure 3.14. 3D weights matrix
visualization.

3.5.4 `1-minimization Adaptation

After calculating κ, a minor modification is necessary for the `1-minimization

algorithm. In essence, we perform an element-wise multiplication between the input

undersampled signal and κ every time before an iteration so that the prior information

is applied in the computation. Hence, we have xi = xi ◦ κk, where x is the undersampled

signal, i is the element position and k is our weighted Φ elements.

3.5.5 Parameter Fine-tuning

As to better compare the different reconstruction strategies applied in this case study,

we leveraged the optimal parameters for the prior information in both deterministic and

CoDePPI by extensively trying different combinations and evaluating each reconstruction.

After analysing the application of each combination, we decided to proceed using the

following values where prior information was applied:

• Prior information proportion: 6%

• CoDePPI’s τ = 1500

• CoDePPI’s β = 900

These values were used to achieve the best reconstructions with our methods, but
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might vary across different images and MR modalities.

3.6 Future Contribution Literature Review and Experiment

3.6.1 Preliminary Tests with Generative Adversarial Networks

In order to test the usage of GANs for data generation and in the future use it along

with prior information for CS systems, we have developed a GAN capable of generating

handwritten digits from 0 to 9 using the notable MNIST dataset. The MNIST dataset

contains 60,000 examples for training and 10,000 examples for testing. The digits have

been size-normalized and centred in a fixed-size image (28× 28 pixels) with values from

0 to 9. For simplicity, each image has been flattened and converted into a 1-dimensional

NumPy array of 784 features (28× 28).

The idea is to test if the neural network can output liable digits that look both

readable (to the extent in which the MNIST dataset is) and also like it has been made

by a human, just like the dataset itself.

Each MNIST image contains a 28× 28 black and white image, like the following:

Figure 3.15. Sample of digits from MNIST

A Deep Convolutional GAN (DCGAN) was used for the experiment. A DCGAN is

an extension of the GAN, except that it explicitly uses convolutional and convolutional-
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transpose layers in the discriminator and generator networks, respectively [8].

3.6.2 Data Transformation

Each input image used by the dataloader went through a computer-vision pre-

processing step that includes:

• Grayscale transform: convert the image to greyscale. When loaded, the MNIST

digits are in RGB format with three channels. Greyscale reduces these three to

one.

• ToTensor: convert the image to a PyTorch Tensor, with dimensions (channels,

height, width). This also rescales the pixel values, from integers between 0 and 255

to floats between 0.0 and 1.0.

• Normalize: scale and translate the pixel values from the range 0.0, 1.0 to -1.0, 1.0.

The first argument is µ and the second argument is σ, and the function applied to

each pixel is:

ρ← (ρ− µ)

σ
(3.1)

3.6.3 Generator Network Architecture

The generator network architecture is implemented using PyTorch as:

• A linear fully-connected module (or layer) to map the latent space to a 7×7×256 =

12544-dimensional space that will later be undersampled several times until we reach

1× 28× 28.

• An optional 1-dimensional batch normalization module

• A leaky ReLU module.

• A 2-dimensional convolutional layer with padding = 2, stride = 1 and 5× 5 kernel

(or filter).

• Two 2-dimensional transposed convolutional layers with padding = 1, stride = 2

and 4× 4 kernel.

• Two optional 2-dimensional batch normalization modules after each 2-dimensional

transposed convolutional layer.
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• A Tanh activation function, rescaling the images to a [−1, 1] range.

Figure 3.16. Generator network architecture of a 3-D image. Source: [8, 9]

The latent space (random signal) input goes through each layer being upscaled until

it reaches the target image dimension 28×28 and then fed into the discriminator network.

3.6.4 Discriminator Network Architecture

The discriminator is a CNN-based image binary classifier network that takes an image

as input and outputs a scalar probability that the given image is real or generated. The

architecture is quite similar to the Generator network, except backwards. Here, the

discriminator takes a 1×28×28 input image, processes it through a series of convolutions,

batch normalizations, and LeakyReLU layers, and outputs the final probability through

a Sigmoid activation function.

Figure 3.17. Discriminator network architecture of a 3-D image. Source: [8, 9]

25



4 CS Reconstruction and Preliminary Deep

Learning Results

In this section, we provide experiments in signal reconstruction using the CS

theory and contrast reconstruction quality of our proposed method – context-depended

probabilistic prior information – with other CS modalities. Additionally, we also present

the deep learning foundation for the future work we intend to proceed along with a

preliminary generation experiment using GANs.

4.1 1-D Compressed Sensing Reconstruction

The reconstruction quality over computational resources demanded trade-off starts

making a difference with L size around 140, which is over 50% of the fully sampled

signal, a proportion much higher than the ones normally used in MRI reconstruction.

This demonstrates that there is no big prejudice in using the indirect reconstruction

method for very undersampled signals (close to 10% of the data) such as the ones used

in MRI.
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Figure 4.1. SNR x L size for direct and indirect `1-minimization for 200 random
1D signals

4.2 Compressed Sensing Reconstruction with Pre-Filtered

Signal

The results in the experiment show a huge gain of resolution in the pre-filtering

method reconstructed image compared to using plain `1-minimization.

The zero-filled reconstruction (dummy baseline) was unable to reconstruct a high

fidelity image and performed very poorly in the PSNR and SNR metrics. The `1-

minimization compressed sensing approach reconstructed the image with some noticeable

noise artefacts, yet much better than the zero-filling approach. Finally, the `1-

minimization along the usage of sparsifying pre-filtering delivered a great looking image

without eye-catching artefacts and also increased the metrics largely.
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4.2.1 Phantom Reconstruction Evaluation

Figure 4.2.
Zero-
filled

Figure 4.3.
`1-
minimization

Figure 4.4.
`1-
minimization
with
pre-
filtering

Figure 4.5.
Shepp-
Logan
phantom
reference
image

It is clear that reconstructing the image using the `1-minimization certainly improves

the MRI reconstruction and the metrics reinforce that the pre-filtering step to pre-process

the image is crucial to achieving higher image quality.

PSNR SSIM SNR NMSE MSE
Zero-fill 16.39 0.26 4.22 3.77e-1 2.29e-2
`1-minimization 30.46 0.82 18.28 1.38e-3 8.99e-4
Pre-filtering `1-minimization 76.90 0.99 64.73 3.36e-7 2.04e-8

Table 4.1. Phantom reconstruction metrics.

PSNR and SNR are both represented in the dB scale, thus the results had to have

improved by great orders of magnitude in each added step to achieve such results.

4.2.2 Sagittal Head MRI Reconstruction

Another experiment done was using a reference sagittal head image of shape

(256×256). The same spiral undersampling pattern with 30.95% data points used in the

phantom experiment was used here for artificial undersampling.

This image poses a harder reconstruction challenge as it is filled with more details and

more complex structures than the phantom. That said, it is clear that the undersampling

pattern and amount of data points has not been sufficient to reconstruct a high fidelity

image in any scenario, but the `1-minimization with pre-filtering reconstruction looks like

the winner again, reinforcing the idea that pre-filtering is a good pre-processing strategy.
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4.2.3 Sagittal Head Reconstruction Evaluation

Figure 4.6.
Zero-
filled

Figure 4.7.
`1-
minimization

Figure 4.8.
`1-
minimization
with
pre-
filtering

Figure 4.9.
Reference
image

The metrics evaluated were not affected as much as they were for the phantom

experiment, but they were mostly improved by pre-filtering usage.

PSNR SSIM SNR NMSE MSE
Zero-fill 14.34 0.35 5.52 0.28 2392.57
`1-minimization 17.54 0.48 8.73 0.13 1144.12
Pre-filtering `1-minimization 17.79 0.49 8.97 0.12 1081.42

Table 4.2. Sagittal reconstruction metrics.

4.3 Dynamic Sagittal Cardiac Case Study

Our method shows significant robustness in the sagittal cardiac case study

experiment, reconstructing better images with faster algorithm runtime when compared

to other techniques, such as deterministic prior information and no prior information at

all.

4.3.1 Deterministic Prior Information

The three prior information Φ obtained from the extraction of non-zero elements

in the filtered images transformed to 2-D masks for visualization. For this dynamic

cardiac images, we used a proportion of prior information of 6%, which in our experiments

demonstrated to be the sweet spot for this image characteristics.
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Figure 4.10. Deterministic prior information with 6% data points proportion for
horizontal, vertical and diagonal border detection filtering, respectively.

As we know the internal organs of the subject are moving throughout the whole

exam, we instinctively know that some of the points represented in this deterministic

approach will represent regions of high movement, thus they will likely introduce error to

the minimization step. This happens because the prior information values are extracted

from simple image border detection techniques that are prone to the generation of noise,

as they are not fine-tuned to our necessities. After visually analysing the images above,

it becomes clearer that some post-processing on this mask can improve the quality of the

given prior information positions.

4.3.2 Context-Dependent Probabilistic Prior Information

Figure 4.11. CoDePPI with 6% data points proportion for horizontal, vertical
and diagonal border detection filtering, respectively.

Now that we have applied the customized CoDePPI weighting by multiplying the Φ

values by our weights matrix x, the regions that should have high confidence of belonging

to support structures in our subject are much better defined. This definition observed

in the visualizations above is also reflected in the `1-minimization as it can be noted in
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the results 4.3. These principles can be easily extrapolated to other MRI modalities and

even other reconstructions techniques apart from the medical segments.

4.3.3 Dynamic Sagittal Cardiac Reconstruction Evaluation

All experiments conducted for the dynamic sagittal cardiac were done to compare

the different applications of prior information, thus all of the reconstructions were done

with the usage of pre-filtering within the `1-minimization context.

Figure 4.12. On the left: zero-filled reconstruction. On the right: no prior
information reconstruction

Figure 4.13. From left to right: deterministic prior information; context-
dependent probabilistic prior information; reference image

The images presented above are displayed from left to right in terms of best SNR.

These images represent the different strategies we took for MRI reconstructions and are

hard to distinguish and perceive actual gain in terms of image quality, thus we should

also analyse the metrics from our dynamic MR reconstruction.
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PSNR SSIM SNR NMSE MSE Runtime(s)

Zero-fill 24.42 0.73 14.43 3.60e-2 234.84 -

No Prior Information 29.69 0.84 19.69 1.07e-2 69.83 1.95

Deterministic 29.95 0.83 19.96 1.01e-2 65.71 2.95

CoDePPI (ours) 30.15 0.84 20.16 9.62e-3 62.69 2.14

Table 4.3. Dynamic sagittal cardiac reconstruction metrics in terms of prior
information usage. Best results for each evaluation represented in bold.

The given experiments show that the CoDePPI approach to prior information leverage

and usage gives more robust confidence in the support positions from a frame to another

in the dynamic MR exam studied when we analyse the metrics above. The least impacted

metric by the usage of prior information was the SSIM, but the other image quality metrics

were positively altered when we introduced the deterministic prior information and later

the CoDePPI strategy. Additionally, our method also performs the reconstruction faster

than the deterministic approach, this happens because in the deterministic case, the

`1-minimization algorithm has a step where it needs to multiply all elements in the Φ

positions by a value τ , whilst in CoDePPI, we use NumPy’s element-wise multiply the

whole matrix by this τ value, discarding the need for array elements look-up that is

slower.

4.4 Possible DL Integration with CoDePPI

Our implementation counts on the usage of signal processing techniques without any

machine learning usage, but our application is intended to be evolved to a solution using

DL for prior information generation using GANs. This research is to be continued in

a higher degree thesis, where we would like to investigate more on two aspects: the

generation of prior information support positions using GANs and a computer-vision

system capable of segmenting the image based on levels of motion throughout the frames

in a dynamic exam.

In this work, we have initiated the documentation of the DL necessary for our next

steps as well as have we also document an experiment for the generation of handwritten

MNIST numbers using a GAN to mitigate viability of our hypothesis to use generative

algorithms in the near future.
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4.5 Artificial Neural Networks

4.5.1 Biological Inspirations

ANNs, as the name suggests, have been (loosely) inspired by biological neural

networks (brains) from animals. The concept of using many layers of vector-valued

representation is drawn from neuroscience. The choice of the functions f (i)(x) used to

compute these representations is also loosely guided by neuroscientific observations about

the functions that biological neurons compute [32]. Another trait they share is that just

like the human brain can be trained to pass forward only meaningful signals to achieve

larger goals of the brain, the neurons on a neural network can be trained to pass along

only useful signal [11].

4.5.2 Neuron

The most basic unit in ANNs is the artificial neuron. Neurons act as feature detectors

and this is one of the advantages of deep learning techniques in contrast to classical

machine learning as the ANN is responsible for doing feature engineering and selection,

and often outperform humans in this task.

These artificial neurons that are modelled mirroring the behaviour of the biological

neuron as both of them are stimulated by inputs and carry some information they receive

to other neurons. Artificial neurons take in inputs x1, x2, . . . , xn, each and multiply

them by their respective weights w1, w2, . . . , wn. Then these weighted inputs are summed

together producing the logit of the artificial neuron, z =
∑n

i=0wixi + b, with b being a

constant number added called bias. After this, the logit is passed to a function f in order

to generate the value y = f(z).
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Figure 4.14. Schematic of an Artificial Neuron. Source: [10]

4.5.3 Multilayer Perceptron

Deep Feedforward Networks (DFN) or Multilayer Perceptron (MLP)s are a type of

ANN very commonly used. It is the foundation of many famous architectures like CNNs.

DFNs have an input layer followed by one or many hidden layers and a single output

layer. Each layer is fully connected to the adjacent layer.

MLPs are computational models that flow information through the function f that

evaluates x. The goal is to approximate some function f∗. For instance, a classifier

y = f ∗ (x) maps an input x to a category y. The feedforward defines a mapping

y = f(x; θ) and learns the value of the parameters θ that result in the best function

approximation [32].

The behaviour of an ANN is shaped by its architecture, which describes the number

of units it should have and how these units connect to each other and how complex the

model is. Often adding too much complexity to the network will lead to overfitting the

training set, which occurs when the model shapes the training data too precisely and

cannot generalise new data fed.

Most ANNs are organized into rows of neurons called layers. These layers are arranged

34



in a chain-like structure, with each layer being a function of the layer before it. These

layers’ goal is to extract representations out of the data fed and generalize what is

meaningful towards minimizing the error rate. This architecture scheme is represented

by the following equation, where i is the layer index:

h(i) = g(i)(W (i)Tx+ b(i))

Figure 4.15. ANN Architecture Sample.

4.5.4 Activation Functions

Activation functions are a scalar-to-scalar function used to propagate the output

of one layer’s neurons forward to the next layer. There are several types of activation

functions for different purposes and network architectures.

The DCGAN architecture used in my MNIST experiment is built using Rectified

linear units (ReLU) activations in the generator network and a tanh in the output

layer. The discriminator network uses LeakyReLU activations for all layers and a sigmoid

function for the output layer. LeakyReLU activation functions [33, 34] have been proven

to work well for higher resolution modelling [8] in contrast to the usage of maxout

activation functions that were first proposed in the original GAN paper [35].
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Name Function Derivative

Sigmoid φ(x) =
1

1 + e−x
φ′(x) = φ(x)(1− φ(x))

TanH φ(x) =
2

1 + e−2x
− 1 φ′(x) = 1− φ(x)2

ReLU φ(x) =

0 x ≤ 0

x x > 0
φ′(x) =

0 x ≤ 0

1 x > 0

Leaky ReLU φ(x) =

αx x ≤ 0

x x > 0
φ′(x) =

α x ≤ 0

1 x > 0

Table 4.4. Activation functions and respective derivatives.

Some of the most used and also required activation functions in the use of GANs and

other widely used neural networks are described below.

4.5.4.1 ReLU

The ReLU [36] transform activates a node only if the input is above a certain threshold

having a linear relationship with the dependent variable and outputs zero for every input

below zero.

Figure 4.16. ReLU activation function

4.5.4.2 Leaky ReLU

ReLU activation functions have the “dying ReLU” problem, where a ReLU neuron is

stuck in the negative side and always outputs 0 [37, 38]. This happens when the slope of

ReLU in the negative range is also 0, once a neuron gets negative, it is unlikely for it to

recover. These “dead” neurons are not playing any role in discriminating the input and
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are essentially useless.

To mitigate this issue within ReLUs, LeakyReLUs are a strategy that opposed to

having the function being zero when x < 0, it has instead a small negative slope (most

times with α = 0.01).

Figure 4.17. Leaky ReLU activation function

4.5.4.3 Tanh

Tanh is a hyperbolic trigonometric function that deals more easily with negative

numbers [11]. Unlike the Sigmoid function, tanh ranges from -1 to 1.

Figure 4.18. Tanh activation function. Source: [11]

4.5.4.4 Sigmoid

Sigmoids can reduce extreme values or outliers in data without removing them,

framing the input from 0 to 1 and most outputs will be close to either 0 or 1.
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Figure 4.19. Sigmoid activation function. Source: [11]

4.5.5 Loss Functions

Loss functions are used to determine how a neural network is performing on the given

data. A metric is calculated based on the error observed in the network’s predictions and

the model then tries to minimize this error in an optimization problem fashion.

Some of the most commonly used functions are described in the table below.

Mean squared error MSE =
1

n

n∑
t=1

e2t

Root mean squared error RMSE =

√√√√ 1

n

n∑
t=1

e2t

Mean absolute error MAE =
1

n

n∑
t=1

|et|

Mean absolute percentage error MAPE =
100%

n

n∑
t=1

∣∣∣∣etyt
∣∣∣∣

Table 4.5. Loss functions and formulas.

In the case of generative networks, the original GAN paper presents a loss function

called minmax [35], that is described as.

minGmaxDV (D,G) = Ex∼Pdata(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (4.1)

Where x is the input data representing an image, D(x) is the discriminator network,
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G(x) is the generator function and z represents the latent vector that is mapped to data-

space by G. Hence, the scalar probability that the output of the generator G is a real

image is given by D(G(z)) [35].

4.5.6 Backpropagation

Backpropagation is a technique used to implement gradient descent in weight space

for an MLP [39, 40]. In essence, backpropagation computes the error partial derivatives

of an approximating function F (w, x) computed by the ANN with respect to the weight

and input vector for each training example [41].

The development of the backpropagation algorithm is a milestone in neural networks

development and research as it made computationally efficient to train MLPs, thus

confirming that ANNs research field was filled with potential in the mid-1980s.

In order to evaluate the derivatives of the function F (w, x) with respect to all the

elements in the weight vector w for an input vector x = [x1, x2, . . . , xm0]
T for an MLP

with layer l = 2, we have the following equation where ϕ is the activation function, w is

the ordered weight vector and x is the input vector fed into the MLP [41]:

F (w,x) =

m1∑
j=0

wojϕ

(
m0∑
i=0

wjixi

)
(4.2)

4.5.7 Gradient Descent

Gradient descent is an optimization algorithm frequently used in ANNs to find the

values of coefficients of a function that minimizes a cost function. Gradient descent can

be very time consuming on large datasets due to the necessity of having a prediction

for each instance in the training set. In scenarios where there is a large number of data

instances, a variation of gradient descent called Stochastic Gradient Descent (SGD) can

be used. SGD updates the coefficients for each training instance or batch instead of at

the end after running through all the training set instances.

Most deep learning models are powered by the SGD and it can be visualized as the

figure below demonstrates: the function starts in a random point in the loss function and

after each iteration, the SGD calculates how it should adjust parameters in order to reach

the minimal point in the loss function, hence moving towards the valley as illustrated.
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Figure 4.20. Gradient descent example visualization. Source: [12]

4.6 Generative Adversarial Networks

GANs are a machine learning strategy proposed in 2014 by Ian Goodfellow [35] that

consists of two simultaneously trained models: the Generator G(x) and the Discriminator

D(x). The generator has the role to generate fake data whilst the discriminator is trained

to discern whether the given input is real or fake.

In essence, the generator takes a vector of random numbers (z) as input and outputs

a fake example that strives to look as close as possible to the training data pattern.

The discriminator takes an image (x) as input from two sources: real examples from the

training set and fake examples generated by the generator network, then the discriminator

outputs a scalar probability that the image is real [13].

GANs play a minimax two-player game in which D tries to maximize the probability

to correctly classify real and fake samples (logD(x)), whilst G tries to minimize the

chance that D will correctly predict its generated outputs are fake (log(1−D(G(x)))).

Ideally, this minimax game would resolve to a solution with pg = pdata, where the

discriminator is incapable of distinguishing real from fake inputs. However, GANs are still

new neural network techniques and its convergence theory is still being highly researched

and hardly reaching this point in reality [35].
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Figure 4.21. GAN training diagram. Source: [13]

4.6.1 Preliminary Tests with Generative Adversarial Networks

Both discriminator losses (fake and real) start very high and quickly decreases as the

generator loss curve goes up in an inverted correlated manner. This happens especially

because the generator starts by tricking the discriminator network very easily as it is

näıve to determine if an image is real or generated. Quickly the discriminator starts

to detect how the data is disposed and manages to interpret the generated images are

different from the training examples it is seeing.

This phenomenon exposes how bad the generator is in the first epochs and how easily

the discriminator can distinguish between created and real. Then as the epochs go by and

both networks get more sophisticated, the generator starts to get better at creating the

desired signal style and makes the discriminator’s loss get higher again as it is observed

in the loss curves below.
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Figure 4.22.
Discriminator fake
loss over epochs

Figure 4.23.
Discriminator real loss
over epochs

Figure 4.24. Generator
loss over epochs

After 100 epochs, the DCGAN for MNIST number generation had an exceptionally

good performance when the generated images are displayed. It is hard to tell if these are

generated images or if they are part of the training set. The generated images sometimes

have a bit more blur to them, but certainly with more epochs and more training samples

this could be minimized. The following results were not cherry-picked in any manner.

Figure 4.25. GAN generated MNIST digits
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5 Conclusion

Our main goals were to implement and validate the efficiency of prior information for

CS reconstruction of MR images along with the proposal of a novel method to improve the

quality of the prior information leveraged. These goals were defined in order to achieve

faster MRI exams and enable more feasible dynamic exams, where the motion is an innate

part of the images extracted. In this research, we have proposed an alternate approach

for prior information extraction called CoDePPI – Context-Dependent Probabilistic Prior

Information – that uses motion context from segmented images and this method proves

efficient and produce better quality for the experiments we have conducted and is now

the best prior information intuition to be used in classical reconstructions.

Additionally, many modules for CS reconstruction have been developed in Python

featuring the usage of undersampling techniques, `p-minimization function, pre-filtering

pre-processing, classical and CoDePPI implementation of the prior information and

modules to convert and utilize fastMRI images, but these experiments were later discarded

due to non-matching results with our algorithm. All this research and development led

to results that led to further hypothesis and investigations that we have initiated in

this very document regarding the usage of DL models for prior information generation

and computer-vision approaches for automatic image segmentation for an automatized

context detection for CoDePPI.

Several experiments were conducted for the comprehension of the CS theory and the

usage of pre-filtering and prior information techniques. These experiments served for the

development of knowledge along with the themes of CS and MRI reconstructions and

later were used for comparisons between methods. In these experiments, we bring several

types of images and MR modalities along with different undersampling techniques to test

these methods against different situations and fully comprehend how different signals

and techniques are impacted. The latter experiments conducted were signal generation

tests where we tested the results of a fully generated signal from a popular dataset to

clarify that this architecture can serve as a signal generator for further prior information

research. Among the preliminary generative results, we also conducted research on DL

topics and documented the foundation theory within the same section we document the

43



GANs results.

Our results conclude that the usage of pre-filtering and prior information techniques

are preferred to be used within the CS theory because they significantly improve the

quality of the reconstructed images. Additionally, our results show that our method along

with pre-filtering application is the current best approach for classical CS reconstructions

of MRI. These results, in practical terms, lead to faster and better MRI exams and

especially more practical dynamic exams as our approach is specifically tested in a

dynamic scenario which were our specific goals as mentioned before. Better reconstruction

quality not only implies that the exams could be conducted in a faster manner, but also

that less energy would be consumed by the MR machine in an exam, more people could

be examined in a given period of time, the machine would need to be utilized less for a

single exam and possibly leading to less maintenance as well. Furthermore, we believe

that the proposal of an improved prior information algorithm can lead other scientists to

new possibilities and contributions to the process of prior information retrieval, after all,

our goal was to not only create better results with a novel algorithm but also contribute

to the field of MRI that is undoubtedly very relevant to medicine and our society.

After implementing CoDePPI, we believe that this work could be continued by

applying DL concepts in some of the steps that we developed throughout this thesis.

One way we believe could generate more improvement is by using GANs to generate the

positions of support positions from one frame to another without the usage of classical

border detection algorithms and hence, providing a more accurate and context-specific

result that likely would improve CS reconstructions. Another way that DL could be

used to improve our work is to use an automatic image segmentation system based

on the motion of regions in the image. This way, the motion segmentations used in

CoDePPI could be generated seamlessly and that would certainly improve the speed for

segmentation generation, as manual segmentations would not be needed. We believe that

both these hypothesis could be very well elaborated and tested in a graduation degree, but

due to the time constraints of a bachelor degree’s thesis, couldn’t be further experimented

in this very work.
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[5] Jure Zbontar, Florian Knoll, Anuroop Sriram, Tullie Murrell, Zhengnan Huang,

Matthew J. Muckley, Aaron Defazio, Ruben Stern, Patricia Johnson, Mary Bruno,

Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh Chandarana, Zizhao

Zhang, Michal Drozdzal, Adriana Romero, Michael Rabbat, Pascal Vincent, Nafissa

Yakubova, James Pinkerton, Duo Wang, Erich Owens, C. Lawrence Zitnick,

Michael P. Recht, Daniel K. Sodickson, e Yvonne W. Lui. fastMRI: An Open Dataset

and Benchmarks for Accelerated MRI. arXiv:1811.08839 [physics, stat], December

2019. arXiv: 1811.08839.

[6] Florian Knoll, Jure Zbontar, Anuroop Sriram, Matthew J. Muckley, Mary

Bruno, Aaron Defazio, Marc Parente, Krzysztof J. Geras, Joe Katsnelson, Hersh

Chandarana, Zizhao Zhang, Michal Drozdzalv, Adriana Romero, Michael Rabbat,

Pascal Vincent, James Pinkerton, Duo Wang, Nafissa Yakubova, Erich Owens,

C. Lawrence Zitnick, Michael P. Recht, Daniel K. Sodickson, e Yvonne W. Lui.

45



fastMRI: A Publicly Available Raw k-Space and DICOM Dataset of Knee Images

for Accelerated MR Image Reconstruction Using Machine Learning. Radiology:

Artificial Intelligence, 2(1):e190007, January 2020.

[7] Jong Chul Ye. Compressed sensing MRI: a review from signal processing perspective.

BMC Biomedical Engineering, 1(1):8, December 2019.

[8] Alec Radford, Luke Metz, e Soumith Chintala. Unsupervised Representation

Learning with Deep Convolutional Generative Adversarial Networks.

arXiv:1511.06434 [cs], January 2016. arXiv: 1511.06434.

[9] Dominic Monn. Deep convolutional generative adversarial networks with

tensorflow, 2017. Available at: https://www.oreilly.com/content/

deep-convolutional-generative-adversarial-networks-with-tensorflow/.

Last access on November 18th, 2020.

[10] J. Quddus. Machine Learning with Apache Spark Quick Start Guide: Uncover

patterns, derive actionable insights, and learn from big data using MLlib. Packt

Publishing, 2018.

[11] Josh Patterson e Adam Gibson. Deep Learning: A Practitioner’s Approach. O’Reilly,

Beijing, 2017.

[12] Daniela Rus. Alexander Amini. Gradient descent relies on trial and error to

optimize an algorithm, aiming for minima in a 3d landscape. adapted by m.

atarod/science, 2020. Available at: https://www.sciencemag.org/news/2018/05/

ai-researchers-allege-machine-learning-alchemy. Last access on November

30th, 2020.

[13] Jakub Langr e Vladimir Bok. GANs in action: deep learning with generative

adversarial networks. Manning Publications, Shelter Island, New York, 2019. OCLC:

on1050335878.

[14] R Nick Bryan. Introduction to the Science of Medical Imaging. Cambridge University

Press, Cambridge, 2009.

[15] S. I. Kabanikhin. Definitions and examples of inverse and ill-posed problems. Journal

of Inverse and Ill-posed Problems, 16(4), January 2008.

[16] Li Wan, Matthew Zeiler, Sixin Zhang, e Yann LeCun. Regularization of Neural

Networks using DropConnect. page 12.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, e Kristina Toutanova. BERT: Pre-

training of Deep Bidirectional Transformers for Language Understanding. In

46



Proceedings of the 2019 Conference of the North American Chapter of the Association

for Computational Linguistics: Human Language Technologies, Volume 1 (Long and

Short Papers), pages 4171–4186, Minneapolis, Minnesota, June 2019. Association

for Computational Linguistics.

[18] Daeryong Kim e Bongwon Suh. Enhancing VAEs for collaborative filtering: flexible

priors & gating mechanisms. In Proceedings of the 13th ACM Conference on

Recommender Systems, pages 403–407, Copenhagen Denmark, September 2019.

ACM.

[19] yan yang, Jian Sun, Huibin Li, e Zongben Xu. Deep ADMM-Net for Compressive

Sensing MRI. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, e R. Garnett,

editors, Advances in Neural Information Processing Systems 29, pages 10–18. Curran

Associates, Inc., 2016.

[20] Guang Yang, Simiao Yu, Hao Dong, Greg Slabaugh, Pier Luigi Dragotti, Xujiong Ye,

Fangde Liu, Simon Arridge, Jennifer Keegan, Yike Guo, e David Firmin. DAGAN:

Deep De-Aliasing Generative Adversarial Networks for Fast Compressed Sensing

MRI Reconstruction. IEEE Transactions on Medical Imaging, 37(6):1310–1321, June

2018.

[21] Morteza Mardani, Enhao Gong, Joseph Y. Cheng, Shreyas S. Vasanawala, Greg

Zaharchuk, Lei Xing, e John M. Pauly. Deep Generative Adversarial Neural Networks

for Compressive Sensing MRI. IEEE Transactions on Medical Imaging, 38(1):167–

179, January 2019.

[22] Dong Liang, Jing Cheng, Ziwen Ke, e Leslie Ying. Deep MRI Reconstruction:

Unrolled Optimization Algorithms Meet Neural Networks. arXiv:1907.11711

[physics, stat], July 2019.

[23] Elizabeth K Cole, John M Pauly, Shreyas S Vasanawala, e Frank Ong. Unsupervised

MRI Reconstruction with Generative Adversarial Networks. page 8, 2020.

[24] D. Liang, J. Cheng, Z. Ke, e L. Ying. Deep magnetic resonance image reconstruction:

Inverse problems meet neural networks. IEEE Signal Processing Magazine,

37(1):141–151, 2020.

[25] P. C. Lauterbur. Image Formation by Induced Local Interactions: Examples

Employing Nuclear Magnetic Resonance. Nature, 242(5394):190–191, March 1973.

[26] Michael Lustig, David Donoho, e John M. Pauly. Sparse MRI: The application

of compressed sensing for rapid MR imaging. Magnetic Resonance in Medicine,

58(6):1182–1195, December 2007.

47



[27] D.L. Donoho. Compressed sensing. IEEE Transactions on Information Theory,

52(4):1289–1306, April 2006.

[28] E.J. Candes, J. Romberg, e T. Tao. Robust uncertainty principles: exact signal

reconstruction from highly incomplete frequency information. IEEE Transactions

on Information Theory, 52(2):489–509, February 2006.

[29] Emmanuel J. Candes e Terence Tao. Near-Optimal Signal Recovery From Random

Projections: Universal Encoding Strategies? IEEE Transactions on Information

Theory, 52(12):5406–5425, December 2006.
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