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Abstract

The presence of test smells in software project have been proven to deteriorate not only its
test suite’s maintainability, but also to hide problems in the software’s implementation.
Based on the work conducted by Soares et Al, this essay presents TestAXE, a tool
capable of refactoring test smells by using features released on the latest version of the
Java testing framework, JUnit 5. By using software reengineering concepts, the tool was
developed in Rascal, a language targeted to the development of metaprograms. To assess
the efficiency and to understand the limitations of TestAXE, an empirical study has
been conducted using a series of Pull Requests made by Soares et al.

Keywords: Software Reenginering, Software Testing, Software Refactoring, Metapro-
gramming, Code quality
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Resumo

A presença de Test Smells em projetos de software causa a degradação da qualidade tanto
da suite de testes desses projetos de software, quanto pode mascarar problemas presentes
na implementação desses projetos. Tomando como base o trabalho desenvolvido por
Soares et Al, este trabalho consiste em apresentar TestAXE, uma ferramenta capaz de
aplicar refatorações em testes que contém test smells utilizando features apresentadas na
última versão da bibloteca de teste para software Java, JUnit 5. A ferramenta utiliza
conceitos de re-engenharia de software e foi desenvolvida em Rascal, uma linguagem
voltada para a produção de meta-programas. Utilizando como referência uma série de
Pull Requests feitos por Soares et Al, um estudo empírico foi conduzido para analisar e
entender a eficiência e as limitações dessa ferramenta.

Palavras-chave: Re-engenharia de software, Testes de software, Refatoração de software,
Metaprogramação, Qualidade de Código
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Chapter 1

Introduction

The development of software tests is one of the main activities of a software developer.
Guaranteeing stability, correctness and code quality are usually the main concerns when
developing a piece of software, aspects which can be verified, to varying degress, by
automated tests. Although, as it also happens with software code development, the
development of test code can suffer from suboptimal design and implementation, leading
to the creation of test smells.

Test smells have been proven to deteriorate the quality of software code [1], while also
affecting the maintainability of a software’s test suite [2]. Nonetheless, test smells have
been extensively studied in the last 20 years, in such a way that they’re catalogued and
several different solution have been proposed [3].

By detecting the code patterns of a smell, a piece of software may be able not only of
detecting these test smells, but also of building refactored code that avoids these problems.
This kind of software has been developed with different scopes and solution proposals,
such as just detecting and leaving the task of actually refactoring the code to the software’s
maintainer, or detecting and programatically refactoring the problematic code [4, 5, 6, 7,
8, 9].

In order to solve a specific set of smells using features from the latest version of
the JUnit testing framework1, based on the work of Soares et al. [3], TestAXE was
developed. TestAXE is a test smell refactoring tool built using Rascal MPL [10], a
meta-programming language that allows for the easy creation and traversal of a Parse
Tree from the definition of a grammar. TestAXE also has a thin python driver that
receives CLI parameters and starts the execution of the Rascal metraprogram, responsible
for detecting and refactoring smells inside a local git repository.

These transformations, as they will be explained in more detail later, are classified as
endogenous transformations [11], since it is the transformation of java code to java code,

1https://junit.org/junit5/
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and are also horizontal [11], since both the input and the output of the transformation
functions are java test classes and test methods, maintaining both the source language
and abstraction level. Ultimately, TestAXE is a translator software [12] that enfocus
the refactoring of test smells in Java test suites by migrating source code that, although
using the latest version of JUnit, is not taking advantage of its newest features.

1.1 Published Paper

With the efforts of building TestAXE done, a paper has been written, co-authored by
Prof. Dr. Rodrigo Bonifácio de Almeida, and submitted to CTIC-ES 3nd Undergraduate
Research on Software Engineering Competition2. This monography presents this paper
and complements it, given the size limitation of its format. The paper is presented in
full on chapter 2, while the design and implementation details of TestAXE and its
transformations are discussed in more detail on chapter 3, as well as the smells that each
one of them is capable of refactoring. Finally, chapter 4 presents an analysis of the tool’s
efficiency in solving test smells, as well of its limitations, and chapter 5 a wrap up of the
conducted work.

2https://cbsoft2022.facom.ufu.br/sbes-ctic.php
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Chapter 2

The Submitted Paper

As stated on chapter 1, a paper presenting TestAXE was published on CTIC-ES 3nd
Undergraduate Research on Software Engineering Competition1. The paper starts by
delivering a short discussion on the current state of metaprograms that transform, or
simply software that detect, test smells. Then TestAXE is presented, with an overview
of its design principles and a description of the transformation pipeline, briefly referencing
the tools Rascal makes availabe to do so. Towards the end, an analysis of the software’s
efficiency in refactoring these smells based on the same dataset used by Soares et al2 is
presented, as well as a short discussion on the tool’s limitations by choice or by lack of
implementation.

The full paper is reproduced below. It has been selected as one of the three best papers
submitted to CTIC-ES. The next chapters will present more comprehensive explanation of
how TestAXE and its transformations work and how the empirical study was conducted.

1https://cbsoft2022.facom.ufu.br/sbes-ctic.php
2https://github.com/easy-software-ufal/refactoring-test-smells-with-junit5
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Abstract. Test smells have been proven to deteriorate the quality of the test suite
of a system, to the point where several different tools have been devised with the
objective of detecting or sometimes even fixing these smells. Have been ex-
tensively studied in more recent years, these smells have been cataloged and
researchers have proposed a series of source code transformations capable of
eliminating these smells. Our goal in this paper is to present TESTAXE, a tool
to refactor test smells using the latest features of JUnit 5. We present an empir-
ical assessment of TESTAXE accuracy and highlight its current limitations.

1. Introduction

The design and implementation of a software system might evolve gradually. How-
ever, existing reports [Izurieta and Bieman 2007, Eick et al. 2001] show that during such
evolutionary efforts, wrong design decisions might happen, eventually leading to code
smells and increasing the technical debt of a system. Indeed, the accumulation of bad de-
sign decisions might cause the software’s design to decay [Parnas 1994, Eick et al. 2001,
Izurieta and Bieman 2007, de Silva and Balasubramaniam 2012], reflecting not only on
the application code but also on the testing assets. The impact of code smells in the appli-
cation code has been extensively studied in the last 20 years (e.g., [Sjoberg et al. 2013]),
though recent research has specifically investigated the negative impact of test smells—
not only on the comprehension and maintenance of test suites [Bavota et al. 2015],
but also on the quality of the testing and application code [Spadini et al. 2018,
Tufano et al. 2016].

Existing tools have been designed to identify [Palomba et al. 2018,
Peruma et al. 2020] and refactor test smells [Lambiase et al. 2020, Santana et al. 2020,
Pizzini 2022]. For instance, the ORACLEPOLISH tool identifies the smells Brittle
Assertions and Unused Input in JUnit test cases [Huo and Clause 2014]; while the
TASTE tool [Palomba et al. 2018] leverages information retrieval techniques on textual
and structural features of test cases to identify test smells. More recently, Lambiase et
al. presented DARTS (Detection And Refactoring of Test Smells), an IntelliJ plugin
for detecting and refactoring the test smells General Fixture, Eager Test, and Lack of
Cohesion of Test Methods [Lambiase et al. 2020]. Examples of tools able to detect a more
comprehensive number of test smells include (a) TSDETECTOR [Peruma et al. 2020] and
JNOSE [Virgínio et al. 2020]. These tools use pattern matching on the abstract-syntax
trees of test cases and identify 19 and 21 types of test smells, respectively.



Aljedaani et al. present a systematic mapping study on the field of test
smell detection [Aljedaani et al. 2021], reporting a total of 22 tools available in
the literature. Differently, there are not so many tools targeting test smell refac-
toring. As already mentioned, the DARTS tool identifies and refactors three
types of test smells [Lambiase et al. 2020]; while the research tool of Santana et
al. [Santana et al. 2020] refactor the test smells Assertion Roulette and Duplicate Assert.
Although these tools show evidence of the importance of automatic JUnit test smell refac-
toring, they do not consider the recent catalog of refactoring recommendations that benefit
from the new JUnit 5 features [Soares et al. 2022].

The goal of this paper is to present the design and evaluation of TESTAXE, a
tool that (a) supports developers in the task of migrating JUnit test cases to use the new
features of the JUnit 5 test framework and (b) identifies and refactors five test smells
using the new features of JUnit 5. We present some background in the next section.
Section 3 presents the design and implementation of TESTAXE. We present details of an
empirical assessment of TESTAXE in Section 4. Finally, in Section 5 we present some
final remarks. TESTAXE is available at https://github.com/PAMunb/JUnit5Migration/

2. Background and related work

According to Spadini et al. [Spadini et al. 2018], “test smells are sub-optimal design
choices in the implementation of test code” and several studies bring evidence that
test smells might compromise not only the quality of the test suites [Bavota et al. 2015,
Virgínio et al. 2019] but also the general quality of software systems [Tufano et al. 2016,
Spadini et al. 2018, Kim et al. 2021, Wu et al. 2022]. For instance, Spadini et al. mined
the source code history of ten open source projects and observed a correlation between
the smells Indirect Testing and Eager Testing and the error-proneness of production code
[Spadini et al. 2018]. Kim et al. also report that test smells make the code more error-
prone [Kim et al. 2021].

Garousi and Küçük present a comprehensive survey on test smells, contributing
with a taxonomy and a catalog of test smells [Garousi and Küçük 2018]. Their taxonomy
groups test smells into six categories, including Test Execution, Test Logic, and Test De-
pendencies. Listing 1 shows an example of the Conditional Test Logic smell, which might
lead the test execution to not run specific assertions [Soares et al. 2022]. Since test smells
compromise the quality of the systems, it is fundamental to provide guidelines, idioms,
and patterns that might help developers to avoid taking bad design decisions as well as
design and implement tools for detecting and removing test smells [Palomba et al. 2018,
Peruma et al. 2020, Lambiase et al. 2020, Santana et al. 2020, Pizzini 2022].

The work of Soares et al. has shown promising results of using new features
from JUnit 5 to remove test smells [Soares et al. 2022]. More specifically, their paper
describes seven features of JUnit 5 that can aid developers to remove 13 test smells, in-
cluding Conditional Test Logic and Assertion Roulette [Soares et al. 2022] smells. The
authors also define new refactorings in terms of templates, which we use as the basis
for our TESTAXE implementation. Similarly to previous works [Lambiase et al. 2020,
Santana et al. 2020], we use pattern matching on abstract syntax trees to implement TES-
TAXE—the first tool that implements four (of seven) refactorings from the Soares et al.
catalog [Soares et al. 2022]



1 @Test

2 void first_test() {

3 if (lastContainerId == null) {

4 lastContainerId = genericContainer.getContainerId();

5 } else {

6 assertNotEquals(lastContainerId,

7 genericContainer.getContainerId());

8 }

9 }

Listing 1. Example of the Conditional Test Logic smell [Soares et al. 2022]

3. TestAXE
TESTAXE was devised as a tool to automatically detect and remove code smells present
in Java software tests, especially those software that uses the JUnit 5 test framework
without taking advantage of its newest features. TESTAXE is composed of two sepa-
rate parts: a Python CLI application to prepare the environment, and a program trans-
formation tool (hereafter transformer)—implemented in the Rascal meta-programming
language [Klint et al. 2009]- that is responsible for transforming the test code.

3.1. The CLI Component

TESTAXE makes available a CLI application with a thin Python “shell” script to perform
a few basic steps before calling the actual Rascal implementation—that transforms Java
test code. This Python script recognizes two CLI options: the path of the repository to
be transformed, and the number of maximum files to which the transformations will be
applied. The repository is assumed to use the git versioning system, as the application
creates, if it does not already exist, a junit5-migration branch and checks out to it.
After checking out the new branch, the application finally calls the Rascal transformer
meta-program implementation. As the transformation finishes, the CLI gets the modified
file list from git and applies an external code formatting tool from Google.1

3.2. The Rascal Transformer Component

The second and main component of TESTAXE is a meta-program that leverages Ras-
cal’s powerful parse tree generator and its traversal functions to detect and refactor test
smells, especially a set of smells whose refactor was proposed on [Soares et al. 2022].
These refactoring proposals are based mainly on new JUnit 5 features, such as new test
annotations, assertion methods, and helper methods. This component also implements
transformations for helping developers to migrate from legacy JUnit code to adopt new
features of JUnit 5.

The transformer collects the files of interest by traversing the directory structure
of the repository recursively. It then parses the file contents generating parse trees and
executes a pipeline of transformations. Transformations are functions that comprise two
steps: (a) a verifying step that checks preconditions and (b) a transformation step that
refactors a test smell. As the outermost grammatical element is a CompilationUnit,
transformations are essentially functions that take in a CompilationUnit as an argument

1https://github.com/google/google-java-format



and also return a CompilationUnit. As the transformer applies the pipeline functions, it
collects metrics to determine which and how many transformations effectively modified
a test case.

3.3. The Transformation Pipeline

As mentioned before, the transformation pipeline is comprised of a collection of func-
tions. Indeed, we assign names to these functions in a hash map, so that we can collect
metrics during the pipeline execution. The transformation pipeline is applied by iterating
over an associative mapping of names and functions, while also aggregating a map of
names to integers, representing the number of times a transformation has been applied.

As transformations may interfere with each other, the order in which the pipeline
is assembled may yield different results. For instance, two of the transformations that
were implemented deals with a sequence of assertion statements grouped together. These
are the AssertAll and ParameterizedTest transformations, which fix, respectively, the
Assertion Roulette and the Test Code Duplication smells.

Supposing there is a Calculator class with a diff static method, which returns
the difference of the two numbers received as parameters. A test case for this method
could look like Listing 2. As there is a collection of assertions being made and the intent
of the test is that all of them be executed, if the first one fails, the two last would not even
run, making it difficult to test the class as intended.

1 @Test

2 public void testCalculatorDiff() {

3 assertEquals(Calculator.diff(5, 1), 4);

4 assertEquals(Calculator.diff(10, 3), 7);

5 assertEquals(Calculator.diff(3, 6), -3);

6 }

Listing 2. A test method for a calculator class.

One possible solution would be to apply the AssertAll transformation. JUnit 5
offers a method that receives multiple lambda functions and runs all of them, disregarding
individual assertion failures while the test method is running. After it finishes, it provides
an adequate report on failed assertions, if any. Applying this transformation to Listing 2
results in the code in Listing 3.

1 @Test

2 public void testCalculatorDiff() {

3 Assert.assertAll(

4 () -> assertEquals(Calculator.diff(5, 1), 4),

5 () -> assertEquals(Calculator.diff(10, 3), 7),

6 () -> assertEquals(Calculator.diff(3, 6), -3)

7 );

8 }

Listing 3. A test method for a calculator class refactored with the AssertAll
transformation.

Nonetheless, there is another, arguably more adequate, solution transformation
for this case: the ParameterizedTest refactoring. A parameterized test receives the test



data as parameters, whose values can come from different sources. It is the most ade-
quate refactoring considering repeated assertions of idempotent methods using different
argument values. Applying this refactoring to the code in Listing 2 results in the code in
Listing 4.

1 @ParameterizedTest

2 @CsvSource({ "5, 1, 4", "10, 3, 7", "3, 6, -3" })

3 public void testCalculatorDiff(int a, int b, int c)

4 {

5 assertEquals(Calculator.diff(a, b), c);

6 }

Listing 4. A test method for a calculator class refactored with the
ParmeterizedTest transformation.

With listings 4 and 3, it becomes clear that both transformations are mutually
exclusive, and therefore the order of the transformations in the pipeline is decisive for
the end result. Table 1 lists the current set of TESTAXE transformations, as well as the
execution order of the pipeline.

Order Smell Transformation Description
T1 Exception Handling ExpectedException Transforms tests with exception parameters to

assertThrows assertions
T2 - ExpectedTimeout Transforms tests with timeout parameters to

assertTimeout assertions
T3 Assertion Roulette AssertAll Groups sequential assertions inside an assertAll call,

guaranteeing every assertion will be verified
T4 Conditional Test ConditionalAssertion transforms tests that run their assertions conditionally, with

an if statement wrapping their body, to tests that are condi-
tionally run, by using the @EnableIf("methodName") anno-
tation

T5 Test Code Duplication RepeatedTest Transforms tests that are wrapped within a for loop, to tests
that have the @RepeatedTest(iterationCount) annotation

T6 Mystery Guest TempDir Adds a test parameter annotated by @TempDir, which is re-
solved into a temporary directory, to tests that use tempo-
rary files

T7 - SimpleAnnotations Migrates JUnit 4 annotations, including @Before,
@BeforeClass. . . , into their JUnit 5 counterparts, as
well as adding the necessary imports for the other transfor-
mations

Table 1. Set of TESTAXE transformations

These transformations are implemented in a modular fashion, each within its own
module. In total, TESTAXE is comprised of 24 files, of which 22 are Rascal source code
files, each one is a module, one is the Python driver, and the last one is the google source
code formatter. TESTAXE has over 3750 lines of code.

3.4. How transformation works

Transformations are functions that receive a CompilationUnit and return a Compilatio-
nUnit that may or not have been modified. A CompilationUnit is a syntax definition
reflecting the abstract syntax of a Java source code, which involve many structures (e.g.,
package declaration, imports, class definitions). These structures are traversed in order
to get to the test method declarations, so detecting and fixing smells is possible. The
structures are traversed from CompilationUnit to MethodDeclaration.



This is the underlying path that is traversed when it is necessary to modify or
extract data from test declarations, but Rascal enables skipping several intermediate steps
in this path through its visit expression. In order to, from a root node, modify or extract
information from another node nested in its hierarchy, one can use the visit expression.
For instance, Listing 5 shows an example of a method that searches for the first method
declaration within a class declaration, returning a maybe structure that may or not contain
this method declaration.

1 public Maybe[MethodDeclaration] getFirstMethod(ClassDeclaration classDeclaration) {

2 top-down visit(classDeclaration) {

3 case MethodDeclaration methodDeclaration: return just(methodDeclaration);

4 }

5 return nothing();

6 }

Listing 5. Visit expression to access deep nested values inside a node.

Listing 5 shows how, despite how nested a node may be in the parse tree, accessing
it is a concise task by using the Rascal visit expression and pattern matching features.
When a node matches the pattern, there are two different kinds of executions that may
take place, depending on how the case is written: a direct replacement of the matched
node with the => operator, or arbitrary code execution, with the ":" operator, which may
resolve into a replacement as well (when using the insert statement). Both of these
approaches appear on TESTAXE code.

Listing 6 shows a simplified version of the SimpleAnnotation transformation that
helps developers to migrate test code to JUnit 5. This transformation uses the first kind of
pattern matching, meaning that there is the replacement of the matched node by another
one of the same type. It is also common that a more complex control flow may be neces-
sary for some transformations, though. For instance, the TempDir transformation requires
two changes in the test code: the replacement of all of the createTempFile method invo-
cations directly from the File class, to a File instance received as a method parameter on
the test method and the addition of a parameter to the test method with this instance as its
value. For this, a boolean variable may be used to dictate whether File.createTempFile
method invocations were found so that the addition of the test parameter may be done
later. Listing 7 shows the segment of the code that does exactly this.

Another important aspect is that the pattern matching can be done in the AST form
or in the concrete syntax form, which is extensively used by TESTAXE. The concrete
syntax form allows for the extraction of node elements within a form that resembles the
actual parsed source and can be seen throughout all of the listings.

1 public CompilationUnit executeSimpleAnnotationsTransformation(CompilationUnit unit) {

2 if(verifySimpleAnnotations(unit)) {

3 unit = top-down visit(unit) {

4 case (MethodModifier)`@BeforeClass` => (MethodModifier)`@BeforeAll`
5 case (MethodModifier)`@Before` => (MethodModifier)`@BeforeEach`
6 }

7 }

8 return unit;

9 }

Listing 6. Direct replacement example in the SimpleAnnotation transformation



1 private MethodDeclaration replaceTempFilesWithTempDir(MethodDeclaration method) {

2 bool tempDirUsed = false;

3 method = top-down visit(method) {

4 case (MethodInvocation) `File.createTempFile(<ArgumentList args>)`: {

5 tempDirUsed = true;

6 insert((MethodInvocation) `tempDir.createTempFile(<ArgumentList args>)`);
7 }

8 }

9 if(tempDirUsed)

10 method = addMethodParameter(method, (FormalParameter) `@TempDir File tempDir`);
11 return method;

12 }

Listing 7. Arbitrary code execution in the pattern match in the TempDir
transformation.

4. Empirical Assessment
The goal of this empirical study is to assess the accuracy of TESTAXE transformations.
Overall, we pose the following research questions:

1. Out of all the transformations that were applied, how often were they correct?
2. Were any of the transformations applied when they should not?
3. Out of all the refactoring opportunities, how often were they detected?

These questions can be answered by two metrics that were measured considering
the output files TESTAXE produce: Precision, which measures how correctly the trans-
formations were applied, and Recall, which measures how frequently were the refactoring
opportunities taken. The computation of these metrics is as follows:

Precision =
TP

TP + FP
;Recall =

TP

TP + FN

In which TP stands for true positives, FP for false positives, and FN for false
negatives. For an overall performance, we calculate the F1-Score (F1), which is computed
as follows:

F1 = 2
Precision×Recall

Precision+Recall

We apply the TESTAXE transformation over a curated dataset of 38 JUnit test
cases. These test cases come from a study based on pull requests from Soares et al.
[Soares et al. 2022]. 2

4.1. Results
Table 2 shows the results of our empirical study. Note that our results outline a careful,
in the sense of not taking any risks, but not a complete set of transformations. Since
Precision is 1, it means that there were no false positive cases, but the downside of
this carefulness appears when looking at the measured value of Recall, showing room
for improvements in smell detection. That is especially true for the ParameterizedTest

transformation, which was frequently present on the false negative transformations, while
not appearing once on the true positive.

2https://github.com/easy-software-ufal/refactoring-test-smells-with-junit5.



Smell Transformation TP FP FN Precision Recall F1

Assertion Roulette AssertAll 97 0 41 1 0.70 0.83
Conditional Test Logic ConditionalAssertion 1 0 2 1 0.34 0.5
Duplicate Assert ParameterizedTest 0 0 21 0 0 0
Mystery Guest TempDir 1 0 0 1 1 1
Test Code Duplication RepeatedTest 4 0 0 1 1 1
Overall Result - 103 0 64 1 0.62 0.76

Table 2. Smell/Transformations metrics

4.2. Limitations

The detection of smells can be rather naive. For instance, the detection of the Conditional
Test Logic smell is a simple verification of a method body wrapped inside an if. Even
if the assertions are all inside if statements, as shown in listing 8, the refactoring won’t
apply if there are any statements outside the if statement.

1 @Test

2 public void conditionalTestWithPrecedingStatements() {

3 someMethod();

4 if(true) {

5 Assert.assertEquals("something", "something");

6 }

7 }

Listing 8. Undetected conditional test logic due to method invocations before the
if statement

That is also true for the Test Code Duplication smell, if there are any statements
outside the for loop, the smell is not detected and therefore, the refactoring is not applied.
For this same smell, for test correctness sake, the transformation is not applied if there are
any method calls, or even values that are not literals (integers, booleans, strings, ...).
Listing 9 shows an example of smell that would not be detected.

1 @Test

2 public void testCodeDuplicationWithMethodInvocationAssertion() {

3 Assert.assertEquals(1, 1);

4 Assert.assertEquals(multiply(5, -1), -5);

5 Assert.assertEquals(10, 10);

6 }

Listing 9. Unconsidered Test Code Duplication smell due to method invocation
inside the assertions

5. Final Remarks and Future Work

This paper details the design and implementation of TESTAXE, a tool that refactors
legacy JUnit code smells using the new features of JUnit 5. Currently, TESTAXE supports
five (of seven) refactorings that Soares at al. detail in their paper [Soares et al. 2022]. We
empirically evaluated TESTAXE and found that it presents a reasonable accuracy (F1 of
0.76), though there are blind spots that lead TESTAXE to miss some opportunities for
removing test smells.



As future work, we intend to complement this research in three main directions.
First, we want to improve the accuracy of TESTAXE, so that it could deal with the corner
cases that are harming its overall performance on fixing test smells. Second, we want to
implement the remaining transformations detailed in [Soares et al. 2022]. Finally, we aim
at conducting a case study with one of our industry patterns.

Declaration
Most of this work has been conducted by the first author of this paper (Estevan Alexander
de Paula), during his final year project as an undergraduate student in Computer Engi-
neering (at the University of Brasília).
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Chapter 3

A Detailed Look on TestAXE

TestAXE is a language processor, more specifically, a translator that performs software
reenginering [12]. It has two different parts: (a) a driver written in Python1, that is
responsible for doing a basic parsing of the CLI parameters received, and (b) a Rascal2

metraprogram containing all the transformations and test smell refactorings. Each part
will be explained individually below.

3.1 The CLI Driver

The driver part of TestAXE does four basic tasks: (a) parse CLI arguments, (b) create
a new git branch to accommodate the modification of files in a separate environment, (c)
execute the translator software, written in Rascal, and finally (d) executing the google
formatter3 on modified files. The last step is important because the transformations
builds code whose identation tends to be inadequate, but by keeping its execution limited
to modified files, the side effects of this formatting is minimal.

3.1.1 CLI arguments

The CLI arguments received by the driver are the input directory, on flag --input_dir, or
-i for the short version, and a number representing the maximum count of modified files,
on flag --max_files, or -m for the short version. The input directory is required to be a
directory holding git repository, while the maximum count of modified files is an optional
parameter.

1https://www.python.org/
2https://www.rascal-mpl.org/
3https://github.com/google/google-java-format
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3.1.2 Git Branch

A git branch named junit5-migration is then created at the source input directory. This
allows for the modification of files without affecting the workflow of the main branch,
while also making it easier for the refactorings to be transformed into a Pull Request4 on
GitHub5, a Merge Request6 on GitLab7, or similar. If a branch named junit5-migration
already exists, then the driver simply performs a checkout to it. Of course, if there are
local uncommited changes, the branch creation or checkout will fail and the driver will
stop its execution.

3.1.3 Executing Transformations

The design and organization of TestAXE will be described later in this same chapter, as
well as the intricacies of its transformations. Although, for now it suffices to say that the
driver calls a shell command executing Rascal’s REPL jar file8, as it is the recommended
way of running Rascal programs outside of an IDE such as Eclipse9. The REPL allows
for the execution of Rascal modules through an entrypoint function conveniently named
main, while also allowing arguments to be passed to this entrypoint function. Of course,
the Rascal module executed by the driver contains the code that reads, transforms and
writes the files in the input directory.

3.1.4 Formatting

The output code is formatted using Google’s Java formatter10. Only files marked as mod-
ified by git are formatted, as a way to minimize the impact of the opinionated formatting
in the repository’s files, while also eliminating extra spaces and tabs, or the lack of these
characters produced by the introduction of code written in Rascal’s concrete syntax form,
which can differ much when compared to the code written by the software’s maintainers
in terms of indentaion.

4https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/
proposing-changes-to-your-work-with-pull-requests/about-pull-requests

5https://github.com/
6https://docs.gitlab.com/ee/user/project/merge_requests/
7https://about.gitlab.com/
8https://www.rascal-mpl.org/start/
9https://www.eclipse.org/

10https://github.com/google/google-java-format
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3.2 The Transformer

The transformer metaprogram, that reads and transforms java code, removing test smells
and applying other necessary modifications to do so, is composed of a pipeline of trans-
formations that receive a CompilationUnit and return a CompilationUnit, which may or
may not have been modified by said function. While transformations are applied, metrics
are collected regarding which and how many of these transformations produced modified
output. A transformation won’t be applied on every input code, as it performs validations
on the input’s contents to decide whether it should or not modify it.

As mentioned before, a transformation is essentially a function that receives and re-
turns a CompilationUnit. A CompilationUnit is a generated type used to read and ma-
nipulate parsed source code according to a syntax definition, which will be later analyzed
in more detail. But, in order to facilitate metric collection, a useful Transformation type
has been defined. This type associates a name string and a transformation function in
the terms mentioned previously. Listing 3.1 shows the definition of such type.

1 data Transformation = transformation(str name, CompilationUnit (CompilationUnit) function);

Listing 3.1: Transformation type and its constructor

3.2.1 The Transformation Pipeline

As mentioned, the transformations implemented by TestAXE are based on the work of
Soares et Al [3]. However, from the transformations that were proposed in their work,
two were left out: (a) Resource Lock and (b) Repeated Tests for code repetition between
test cases.

Resource Lock was left out because applying it meant detecting resource usage that
might be dependent on race conditions, and which test cases, running concurrently, would
have to be refactored to eliminate race conditions, and the complexity of such verification
is far from trivial, especially considering the time available for its design and implemen-
tation.

Repeated Tests, on the other hand, was left out due to the need of comparing test
cases with other test cases. Aside from the increase in time complexity, since every test
case would have to be compared with other test cases, it would have to be very carefully
implemented in order to avoid false positives, which would eliminate tests cases.

The transformation pipeline is a list of Transformation variables. By checking on
the difference between the input and the output of each function call, it is possible to
account for which ones produced a modified output. Listing 3.2 shows how the entrypoint
function mentioned on subsection 3.1.3 builds the transformation pipeline. The order
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in which these transformations are applied may interfere with the final result, as one
transformation may modify code that would be decisive for the conditional check of the
next one. This aspect is explored in more detail on the paper presented in chapter 2.

1 list[Transformation] transformations = [

2 transformation("ExpectedException", expectedExceptionTransform),

3 transformation("ExpectedTimeout", expectedTimeoutTransform),

4 transformation("AssertAll", executeAssertAllTransformation),

5 transformation("ConditionalAssertion", executeConditionalAssertionTransformation),

6 transformation("ParameterizedTest", executeParameterizedTestTransformation),

7 transformation("RepeatedTest", executeRepeatedTestTransformation),

8 transformation("TempDir", executeTempDirTransformation),

9 transformation("SimpleAnnotations", simpleAnnotationTransform)

10 ];

Listing 3.2: The transformation pipeline

The function references shown on 3.2 have all been imported from their respective
transformation modules. Each transformation is contained within its own module, and a
few utilities modules have also been written in order to avoid code repetition. Functions
to manipulate and detect Java test methods, for instance, are commonly used throughout
the transformations and have been extracted to separate modules.

Not all of the transformations shown on 3.2 refactor test smells. SimpleAnnotations,
for instance, deals mainly with adjusting imports and updating annotations, which is,
nonetheless, essential for the well functioning of the test smell refactors.

Listing 3.3 demonstrates how files are modified and metrics collected. The files con-
tained in the allFiles variable are the ones contained in the --input_dir directory, explained
earlier in this chapter. Listing 3.4 presents the implementation of the function that effec-
tively applies the transformations and adds transformations metrics to the metrics map,
which associates transformation names, (the same names used in the Transformation type
constructor), to integers representing the amount of times that transformation has been
applied. This function also tracks the total applied transformation count, allowing the
pipeline to stop when the --max_files parameter is reached.

1 CompilationUnit transformedUnit;

2 for(loc f <- allFiles) {

3 str content = readFile(f);

4

5 <transformedUnit, totalTransformationCount, transformationCount> = applyTransformations(

6 content,

7 totalTransformationCount,

8 transformationCount,

9 transformations
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10 );

11

12 writeFile(f, transformedUnit);

13 if((maxFiles) > 0 && (totalTransformationCount >= maxFiles)) {

14 break;

15 }

16 }

Listing 3.3: Implementation of the file transformation loop, as well as the update of the
metrics map

1 public tuple[CompilationUnit, int, map[str, int]] applyTransformations(

2 str code,

3 int totalTransformationCount,

4 map[str, int] transformationCount,

5 list[Transformation] transformations

6 ) {

7 CompilationUnit unit = parse(#CompilationUnit, code);

8

9 for(Transformation transformation <- transformations) {

10 CompilationUnit transformedUnit = transformation.function(unit);

11 if(unit != transformedUnit) {

12 transformationCount[transformation.name] += 1;

13 totalTransformationCount += 1;

14 }

15 unit = transformedUnit;

16 }

17

18 return <unit, totalTransformationCount, transformationCount>;

19 }

Listing 3.4: The implementation of source code parsing and transformation

With a general understanding of how the transformation pipeline is built and applied,
a more detailed explanation on the syntax definitions and on each of the transformations
is presented below.

Syntax Definitions and Parsing

Rascal allows for the definition of context-free grammars, building parsers according to
these definitions. The syntax definitions used in TestAXE were written by Prof. Dr.
Rodrigo Bonifácio de Almeida. The CompilationUnit definition mentioned earlier is one
of such definitions used in TestAXE, and is the outermost syntax definition a Java
source code can have. Listing 3.5 shows the definition of a CompilationUnit.
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1 start syntax CompilationUnit = PackageDeclaration? Imports TypeDeclaration*;

Listing 3.5: Syntactic definition of the CompilationUnit

The start keyword in listing 3.5 denotes a definition that is the root of any generated
ParseTree. The listing clearly shows that the definition of a CompilationUnit is non-
terminal, meaning it is derived from other syntactic definitions, namely PackageDeclaration,
Imports and TypeDeclaration. In other words, a CompilationUnit is composed of these
three "lower" syntactic definitions. There are, however, two special tokens in this defini-
tion that have a special meaning: the ? character means the preceding definition may or
not be present, while the * character denotes a list of the preceding definition. There-
fore, a CompilationUnit is composed of a PackageDeclaration node that may or not be
present, an Imports node, and a list of TypeDeclaration nodes.

Understanding the syntactic definition of the most common elements in the transfor-
mations is required to properly understand them, so the path from CompilationUnit to a
method declaration will be presented below, which will later aid the understanding of the
actual refactoring implementations. Listing 3.6 shows syntax definitions sequentially from
CompilationUnit to MethodDeclaration, with emphasized text on the definitions that lead
from the first to the latter. The listing also exposes some definitions that contain literals,
such as ";" and "{". These characters inside quotation marks are interpreted literally by
the parser.

1 start syntax CompilationUnit = PackageDeclaration? Imports TypeDeclaration*;

2

3 syntax TypeDeclaration = ClassDeclaration ";"*

4 | InterfaceDeclaration ";"*

5 ;

6

7 syntax ClassDeclaration = NormalClassDeclaration

8 | EnumDeclaration

9 ;

10

11 syntax NormalClassDeclaration = ClassModifier* "class" Identifier TypeParameters? Superclass?

↪→ Superinterfaces? ClassBody;

12

13 syntax ClassBody = "{" ClassBodyDeclaration* decls "}" ";"? ;

14

15 syntax ClassBodyDeclaration = ClassMemberDeclaration

16 | InstanceInitializer

17 | StaticInitializer

18 | ConstructorDeclaration

19 ;
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20

21 syntax ClassMemberDeclaration = FieldDeclaration

22 | MethodDeclaration

23 | ClassDeclaration

24 | InterfaceDeclaration

25 ;

26

27 syntax MethodDeclaration = MethodModifier* MethodHeader MethodBody;

Listing 3.6: All syntactic definitions from CompilationUnit to MethodDeclaration

organized sequentially

Figure 3.1 shows a tree visualization of these nodes. Each node connected to its parent
node denote an or composition, meaning that the parent node may be any of such nodes,
while each node connected to its sibling node denote a single definition. Nodes highlighted
in blue background show the path from CompilationUnit to MethodDeclaration.

Listings 3.8 to 3.13 show each node value in the incremental parsing of the example
source code in listing 3.7. Each listing displays the value that would be contained inside
the ParseTree node of that specific type.

1 package app.example;

2

3 import org.junit.jupiter.api.Test;

4

5 public class ExampleTestClass {

6 @Test

7 public void exampleTestMethod() {

8 Assertions.assertEquals(1, 1);

9 }

10 }

Listing 3.7: Original source code
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Figure 3.1: Syntax definition tree with highlighted nodes to show the path from
CompilationUnit to MethodDeclaration
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1 package app.example;

2

3 import org.junit.jupiter.api.Test;

4

5 public class ExampleTestClass {

6 @Test

7 public void exampleTestMethod() {

8 Assertions.assertEquals(1, 1);

9 }

10 }

Listing 3.8: CompilationUnit node

1 public class ExampleTestClass {

2 @Test

3 public void exampleTestMethod() {

4 Assertions.assertEquals(1, 1);

5 }

6 }

Listing 3.9: ClassDeclaration node

1 {

2 @Test

3 public void exampleTestMethod() {

4 Assertions.assertEquals(1, 1);

5 }

6 }

Listing 3.10: ClassBody node

1 @Test

2 public void exampleTestMethod() {

3 Assertions.assertEquals(1, 1);

4 }

Listing 3.11: ClassBodyDeclaration

node

1 @Test

2 public void exampleTestMethod() {

3 Assertions.assertEquals(1, 1);

4 }

Listing 3.12: ClassMemberDeclaration

node

1 @Test

2 public void exampleTestMethod() {

3 Assertions.assertEquals(1, 1);

4 }

Listing 3.13: MethodDeclaration node

Furthermore, breaking down a MethodDeclaration node makes it possible for the de-
tection and the manipulation of a test method. Some transformations manipulate method
modifiers, method names, or even write new methods as a whole, so the definitions inside
a MethodDeclaration are important and frequently used throughout TestAXE. Listing
3.14 exposes the syntax definitions that comprise a method declaration.

1 syntax MethodDeclaration = MethodModifier* MethodHeader MethodBody;

2

3 syntax MethodModifier = Annotation

4 | "public"

5 | "protected"

6 | "private"

7 | "abstract"

8 | "static"

9 | "final"

10 | "synchronized"

11 | "native"
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12 | "strictfp"

13 ;

14

15 syntax MethodHeader = Result MethodDeclarator Throws?

16 | TypeParameters Annotation* Result MethodDeclarator Throws?

17 ;

18

19 syntax MethodBody = Block ";"*

20 | ";"

21 ;

Listing 3.14: Syntactic definitions contained within a MethodDeclaration

Table 3.1 shows what breaking down the MethodDeclaration node on listing 3.13 into
the more specialized syntactic definitions on listing 3.14 would result in. The table is
organized according the token’s appearance in listing 3.13. Functions that detect test
methods, for instance, do so by checking if any of the Annotation nodes contained within
the MethodDeclaration has @Test as its value. Similarly, transformations that modify
this default @Test annotation do so by rebuilding the whole MethodDeclaration node with
another Annotaion node in its place, such as @ParameterizedTest or @RepeatedTest(i).

Node Value Outer Node Type Inner Node Type
@Test MethodModifier Annotation
public MethodModifier -
void Result -
exampleTestMethod MethodDeclarator -
{ Assertions.assertEquals(1, 1); } MethodBody Block

Table 3.1: Break down of nodes contained in a MethodDeclaration (outer nodes) into
more specialized nodes (inner nodes)

ParseTree Traversal

As well as providing the tools for ParseTree generation, Rascal offers ways to traverse,
inspect and modify it. The visit expression traverses the ParseTree received as argument
and allows for the definition of patterns that, when matched, perform a specific action.
This pattern is known as Tree Pattern Matcher [13]. The action to be performed can be
in one of two forms: (a) replacement or (b) code block execution.

A replacement can be identified as by the => operator, and its effect is the replacement
of the matched pattern by whatever is on the right-hand side of it, given that both share
the same type. Listing 3.15 shows an example of a replacement: transforming a private
method into a public method.
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A code block execution, on the other hand, is preceded by :, and allows for the
execution of arbitrary code, that may or may not replace the left-hand side. Listing 3.16
shows an example of such pattern, which is the function used in TestAXE to detect
MethodDeclaration nodes that contain a test method. There are two special statements
inside a code block in such circumstances: an insert statement will replace the matched
pattern with the node passed as parameter, while a fail statement will skip the current
match.

1 top-down visit(methodDeclaration) {

2 case (MethodModifier) ‘private‘ => (MethodModifier) ‘public‘

3 }

Listing 3.15: Replacement inside a visit expression

1 public bool isMethodATest(MethodDeclaration method) {

2 top-down visit(method) {

3 case (Annotation) ‘@Test‘: return true;

4 case (Annotation) ‘@ParameterizedTest‘: return true;

5 case (Annotation) ‘@RepeatedTest(<ElementValue _>)‘: return true;

6 }

7

8 return false;

9 }

Listing 3.16: Code block execution inside a visit expression

With this introduction on how the ParseTree is generated, traversed and manipu-
lated, the next subsections will go into more detail on how each transformation works.
SimpleAnnotations, ExpectedException and ExpectedTimeout transformations were all
written by Prof. Dr. Rodrigo Bonifácio de Almeida, and while the first has had some mi-
nor modifications for the current version of TestAXE, the last two remained unchanged.

3.2.2 SimpleAnnotations

While the SimpleAnnotations transformation does not refactor any test smell by itself,
none of the transformations that do so would work without it. It acts by updating special
annotations used by JUnit from version 4 to version 5, as well as by adding the correct
import of the newest testing API in the framework. Listing 3.17 shows the most important
part of the transformation.

1 public CompilationUnit executeSimpleAnnotationsTransformation(CompilationUnit unit) {

2 if(verifySimpleAnnotations(unit)) {

3 unit = top-down visit(unit) {

4 case (Imports)‘<ImportDeclaration* imports>‘ => updateImports(imports)
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5 case (MethodModifier)‘@BeforeClass‘ => (MethodModifier)‘@BeforeAll‘

6 case (MethodModifier)‘@Before‘ => (MethodModifier)‘@BeforeEach‘

7 case (MethodModifier)‘@After‘ => (MethodModifier)‘@AfterEach‘

8 case (MethodModifier)‘@AfterClass‘ => (MethodModifier)‘@AfterAll‘

9 case (MethodModifier)‘@Ignore‘ => (MethodModifier)‘@Disabled‘

10 }

11 }

12 return unit;

13 }

Listing 3.17: The main part of the SimpleAnnotations transformation

3.2.3 ExpectedException

This transformation, as well as SimpleAnnotation, does not refactor any test smell and
aims to update testing code to use the latest definitions of JUnit 5, in this case, the cap-
turing of exception throwing on test methods. Listing 3.18 presents this transformation.

1 public CompilationUnit executeExpectedExceptionTransformation(CompilationUnit unit) {

2 if(verifyExpectedException(unit)) {

3 unit = top-down visit(unit) {

4 case (Imports)‘<ImportDeclaration* imports>‘ => updateImports(imports)

5

6 case (MethodDeclaration)‘@Test(expected = <TypeName exception>.class)

↪→ public void <Identifier name>() <Throws t> { <BlockStatements

↪→ stmts> }‘ =>

7 (MethodDeclaration)‘@Test

8 ’public void <Identifier name>() <Throws t> {

9 ’ Assertions.assertThrows(<TypeName

↪→ exception>.class, () -\> {

10 ’ <BlockStatements stmts> });

11 ’ }

12 ’

13 ’ ‘

14

15 case (MethodDeclaration)‘@Test(expected = <TypeName exception>.class)

↪→ public void <Identifier name>() { <BlockStatements stmts> }‘

↪→ =>

16 (MethodDeclaration)‘@Test

17 ’ public void <Identifier name>() {

18 ’ Assertions.assertThrows(<TypeName

↪→ exception>.class, () -\> {

19 ’ <BlockStatements stmts> });

20 ’ }

21 ’
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22 ’ ‘

23 }

24 }

25 return unit;

26 }

Listing 3.18: The main part of the ExpectedException transformation

3.2.4 ExpectedTimeout

The ExpectedTimeout transformation, as well as the two previous ones, does not target
any test smell but rather the update of code that does not use the latest APIs offered by
JUnit. The transformation is shown on Listing 3.19.

1 public CompilationUnit executeExpectedTimeoutTransformation(CompilationUnit unit) {

2 if(verifyTimeOut(unit)) {

3 unit = top-down visit(unit) {

4 case (Imports)‘<ImportDeclaration* imports>‘ => updateImports(imports)

5

6 case (MethodDeclaration)‘@Test(timeout = <ConditionalExpression exp>)

7 ’public void <Identifier name>() <Throws t> {

8 ’ <BlockStatements stmts>

9 ’}‘ =>

10

11 (MethodDeclaration)‘@Test

12 ’public void <Identifier name>() <Throws t> {

13 ’ Assertions.assertTimeout(Duration.

↪→ ofMillis(<ConditionalExpression exp>),

↪→ () -\> {

14 ’ <BlockStatements stmts> });

15 ’ }

16 ’

17 ’ ‘

18

19 case (MethodDeclaration)‘@Test(timeout = <ConditionalExpression exp>)

20 ’public void <Identifier name>() {

21 ’ <BlockStatements stmts>

22 ’}‘ =>

23

24 (MethodDeclaration)‘@Test

25 ’public void <Identifier name>() {

26 ’ Assertions.assertTimeout(Duration.

↪→ ofMillis(<ConditionalExpression exp>),

↪→ () -\> {

27 ’ <BlockStatements stmts> });
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28 ’ }

29 ’

30 ’ ‘

31 }

32 }

33 return unit;

34 }

Listing 3.19: The main part of the ExpectedTimeout transformation

3.2.5 AssertAll

AssertAll is the first transformation of the pipeline that aims test smell refactoring.
Assertion Roulette is a test smell that happens when there are many assertions being made
inside a single test method. The usual behavior of assertions is to stop the execution of a
test as soon as the first one fails, which is exactly what JUnit’s assertions do. One way to
avoid such problem would be to refactor the test method into multiple test cases, which
would also improve readability since their scope would be reduced and better defined.
However, this is not always convenient, or maybe not even an option, so a better approach
to address a sequence of assertion statements would be to group all of these assertions
in such a way that every single assertion is run, and this is exactly what assertAll from
JUnit 5 does. Listings 3.20 shows what a code presenting such smell would look like and
listing 3.21 shows what the refactored output would look like.

1 @Test

2 public void exampleTestMethod() {

3 assertionA;

4 assertionB;

5 assertionC;

6 }

Listing 3.20: Test method containing
the Assertion Roulette smell

1 @Test

2 public void exampleTestMethod() {

3 Assertions.assertAll(

4 () -> assertionA,

5 () -> assertionB,

6 () -> assertionC

7 );

8 }

Listing 3.21: Refactored test method
using the assertAll expression

The assertAll assertion receives multiple lambda arguments, preferably with a single
assertion being run inside each. As the test finishes, all of the lambdas have been run and
a proper report on which assertions failed have failed is shown. To apply this refactoring,
the AssertAll transformation searches for sequential assertions inside test methods and
wraps them inside lambdas in a assertAll statement. Listing 3.22 shows the entrypoint
function of this transformation.
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1 public CompilationUnit executeAssertAllTransformation(CompilationUnit unit) {

2 unit = top-down visit(unit) {

3 case MethodDeclaration method => declareTestWithAssertAll(method)

4 when isMethodATest(method) && hasSequentialAssertions(method)

5 }

6

7 return unit;

8 }

Listing 3.22: Entrypoint of the AssertAll transformation

For readability’s sake, the logic has been split on two functions, namely hasSequentialAssertions

↪→ and declareTestWithAssertAll. The when statement expects a boolean value to determine
whether the execution of the replacement action should take place. The presence of se-
quential assertion statements inside the method’s body is verified by counting sequences
of these statements. Whenever a sequence hits a length of 2, the method returns true,
otherwise, it returns false. If the current MethodDeclaration node is a test method and
contains at least one sequence of assertion statement, the transformation is applied.

Listing 3.23 shows what the transformation process looks like. The transforma-
tion keeps track of what statements will be present in the output code through the
refactoredStatements variable. While it traverses the method body, it adds assertino state-
ments an assertion group. Although, if the current statement is not an assertion, the
assertion group is reset and its size is checked. If the assertion group has the minumum
statement count, the group is rewritten as an assertAll expression.

1 int MINIMUM_ASSERTION_GROUP_SIZE = 2;

2

3 public CompilationUnit executeAssertAllTransformation(CompilationUnit unit) {

4 unit = top-down visit(unit) {

5 case MethodDeclaration method => declareTestWithAssertAll(method)

6 when isMethodATest(method) && hasSequentialAssertions(method)

7 }

8

9 return unit;

10 }

11

12 public MethodDeclaration declareTestWithAssertAll(MethodDeclaration method) {

13 list[BlockStatement] refactoredStatements = [];

14 list[BlockStatement] assertionGroup = [];

15 Maybe[BlockStatement] previousStmt = nothing();

16

17 top-down-break visit(extractMethodBody(method)) {

18 case BlockStatement s : {
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19 if(isStatementAnAssertion(s)) {

20 assertionGroup += s;

21 } else {

22 if(isSomething(previousStmt) && isStatementAnAssertion(unwrap(previousStmt))) {

23 if(size(assertionGroup) >= MINIMUM_ASSERTION_GROUP_SIZE) {

24 refactoredStatements += buildAssertAll(assertionGroup);

25 } else if (size(assertionGroup) != 0) {

26 refactoredStatements += assertionGroup;

27 }

28 assertionGroup = [];

29 }

30 refactoredStatements += s;

31 }

32 previousStmt = just(s);

33 }

34 }

35

36 if(size(assertionGroup) >= MINIMUM_ASSERTION_GROUP_SIZE) {

37 refactoredStatements += buildAssertAll(assertionGroup);

38 } else if (size(assertionGroup) != 0) {

39 refactoredStatements += assertionGroup;

40 }

41

42 str methodBody = ("{\n" | it + unparse(s) + "\n" | BlockStatement s <- refactoredStatements)

↪→ + "}";

43

44 return replaceMethodBody(method, parse(#MethodBody, methodBody));

45 }

Listing 3.23: Transformation logic for the AssertAll transformation

3.2.6 ConditionalAssertion

The Conditional Test Logic smell happens when a test method contains control-flow struc-
tures inside the test code, such as an if statement. By adding conditional test logic to a
test method, the test suite is prone to false positive tests, because conditional tests will
be reported as being successfully ran when they actually haven’t run any assertions at
all. In order to avoid such behavior, one can use the @EnableIf annotation from JUnit 5.
Listings 3.24 and 3.25 show what a test method with this smell looks like and what a
refactored test method looks like, respectively.
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1 @Test

2 public void conditionalTestLogic() {

3 if(System.getProperty("os.name") == "

↪→ Linux") {

4 assertion;

5 }

6 }

Listing 3.24: Test method with the
Conditional Test Logic smell

1 @Test

2 @EnableIf("isOSLinux")

3 public void unconditionalTestLogic() {

4 assertion;

5 }

6

7 public bool isOSLinux() {

8 return System.getProperty("os.name")

↪→ == "Linux";

9 }

Listing 3.25: Refactored code to
eliminate the Conditional Test Logic
smell

The @EnableIf annotation conditionally runs the whole test method, depending only
on the return value of the method whose name is received as a string parameter. This
transformation works by keeping a list of conditional statements that will be used to
generate the boolean functions used to conditionally enable tests. But it only does this to
tests that can be refactored. In order to avoid missing variable definitions problems, test
setup code separation from the test body, etc...the only test methods that are refactored
by this transformation are those whose body contains exclusively an if with no else

statements. Listing 3.26 present the transformation’s code.
1 public CompilationUnit executeConditionalAssertionTransformation(CompilationUnit unit) {

2 list[tuple[Identifier name, Expression condition]] conditionalMethods = [];

3

4 unit = top-down visit(unit) {

5 case MethodDeclaration method: {

6 if(isMethodATest(method)) {

7 switch(applyTransformation(method)) {

8 case just(transformedMethodData): {

9 conditionalMethods += <transformedMethodData[1], transformedMethodData[2]>;

10 insert(transformedMethodData[0]);

11 }

12 case nothing(): fail;

13 }

14 }

15 }

16 }

17

18 return (unit |

19 declareNewMethod(t.condition, t.name, it) |

20 tuple[Identifier name, Expression condition] t <- conditionalMethods);

21 }
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22

23 private Maybe[tuple[MethodDeclaration declaration, Identifier enablerName, Expression

↪→ condition]] applyTransformation(MethodDeclaration method) {

24 Identifier testName = extractMethodName(method);

25

26 top-down-break visit(extractMethodBody(method)) {

27 case (MethodBody) ‘{

28 ’ if(<Expression condition>) <Statement statement>

29 ’}‘ : {

30 if(!isStatementABlock(statement)) fail;

31 str conditionalMethodName = "<unparse(testName)>Condition";

32 StringLiteral conditionalMethodNameLiteral = parse(#StringLiteral, "\"<

↪→ conditionalMethodName>\"");

33 Annotation enablerAnnotation = (Annotation) ‘@EnableIf(<StringLiteral

↪→ conditionalMethodNameLiteral>)‘;

34 MethodBody refactoredBody = parse(#MethodBody, unparse(statement));

35 MethodDeclaration transformedMethod = replaceMethodBody(

36 addMethodAnnotation(method, enablerAnnotation),

37 refactoredBody

38 );

39 return just(<transformedMethod, parse(#Identifier, conditionalMethodName), condition>);

40 }

41 case MethodBody _: return nothing();

42 }

43

44 return nothing();

45 }

Listing 3.26: Transformation code for the ConditionalAssertion transformation

3.2.7 ParameterizedTest

The ParameterizedTest transformation fixes the Duplicate Assert and Test Code Repeti-
tion smells. A series of repetitive assertions which differ only by their parameters is the
cause the first smell, while the repetition of setup code that not necessarily contains asser-
tions, for example, causes the latter. In order to avoid repetitiveness in these cases, JUnit
5 offers the @ParameterizedTest annotation, which must be accompanied by at least one other
annotation that provides source values to be received as parameters. Example of sources
are @NullSource, @EmptySource, @EnumSource and the one used by the ParameterizedTest trans-
formation, @CsvSource. These sources can be combined in order to provide a collection
of source values to a test method. Listings 3.27 shows what a test method porting the
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Duplicate Assert smell looks like, while 3.28 shows its refactored counterpart using the
@ParameterizedTest annotation.

1 @Test

2 public void unparemeterizedTest() {

3 Assertions.assertEquals(1, 1);

4 Assertions.assertEquals(2, 2);

5 Assertions.assertEquals(5, 5);

6 Assertions.assertEquals(0, 0);

7 }

Listing 3.27: Test method presenting the
Duplicate Assert smell

1 @ParameterizedTest

2 @CsvSource({

3 "1, 1", "2, 2", "5, 5", "0, 0"

4 })

5 public void parameterizedTest(int a, int b

↪→ ) {

6 Assertions.assertEquals(a, b);

7 }

Listing 3.28: Refactored code to
eliminate the Conditional Test Logic
smell

This transformation is only applied to test methods that repeat the same assertion
for several different argument values. By detecting that every assertion is the same, the
test can be refactored to a single assertion invocation that receives each argument value
at a time. After making all assertions are the same method, extracting each assertion
argument and its type suffices, as this allows for the addition of the test parameters with
correct types. Then, a single assertion is built with the parameters received by the test.
Listing 3.29 shows the main logic for this transformation.

1 data Argument = argument(str argType, Expression expression);

2

3 public CompilationUnit executeParameterizedTestTransformation(CompilationUnit unit) {

4 unit = top-down visit(unit) {

5 case MethodDeclaration method => parameterizeTest(method)

6 when (isMethodATest(method) &&

7 testHasMultipleStatements(extractMethodBody(

↪→ method)) &&

8 allStatementsAreTheSameAssertion(

↪→ extractMethodBody(method)))

9 }

10

11 return unit;

12 }

13

14 private MethodDeclaration parameterizeTest(MethodDeclaration method) {

15 list[ArgumentList] args = [];

16

17 switch(extractAssertionsArguments(extractMethodBody(method))) {

18 case just(argList): args = argList;

19 case nothing(): return method;
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20 }

21

22 list[list[Argument]] invocationArgs = [];

23 switch(extractArguments(args)) {

24 case just(arguments): invocationArgs = arguments;

25 case nothing(): return method;

26 }

27

28 if(!allArgumentsHaveSameType(invocationArgs)) return method;

29

30 return refactorTest(method, invocationArgs);

31 }

32

33 private MethodDeclaration refactorTest(MethodDeclaration method, list[list[Argument]]

↪→ invocationArgs) {

34 list[FormalParameter] methodParams = [];

35 str assertionArgs = "";

36 int i = 0;

37 for(Argument arg <- head(invocationArgs)) {

38 str argName = "arg<i>";

39 methodParams += parse(#FormalParameter, "<arg.argType> <argName>");

40 assertionArgs += "<argName>, ";

41 i += 1;

42 }

43 method = (method | addMethodParameter(it, param) | FormalParameter param <- methodParams);

44

45 ArgumentList assertionArgList = parse(#ArgumentList, assertionArgs[..-2]);

46 MethodInvocation assertionWithParameterizedArgs = top-down-break visit(

47 extractFirstMethodInvocation(extractMethodBody(method))

48 ) {

49 case ArgumentList _ => assertionArgList

50 };

51

52 MethodBody refactoredBody = (MethodBody) ‘{

53 ’ <MethodInvocation assertionWithParameterizedArgs

↪→ >;

54 ’}‘;

55

56 return addParameterizedTestAnnotation(replaceMethodBody(method, refactoredBody),

↪→ invocationArgs);;

57 }

Listing 3.29: Transformation logic for the ParameterizedTest transformation
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3.2.8 RepeatedTest

Out of all the refactorings implemented, RepeatedTest is probably the most complex. The
purpose of this transformation is to refactor test methods with defined finite loops inside
them to use the @RepeatedTest(i) annotation instead, in which i is the amount of times
the test method should be repeated. This avoids that the failure of one execution stops
all the others, which brings the Conditional Test Logic smell, although not as explicitly
as in the case of the ConditionalAssertion transformation. Listing 3.30 shows what a
unrefactored test looks like, while 3.31 shows what the refactored output looks like.

1 @Test

2 public void repeatedTest() {

3 for(i = 0; i < 5; i++) {

4 Assertions.assertEquals(1, 1);

5 }

6 }

Listing 3.30: Test method containing a
repetition structure

1 @RepeatedTest(5)

2 public void repeatedTest() {

3 Assertions.assertEquals(1, 1);

4 }

Listing 3.31: Refactored test method
using the @RepeatedTest annotation

This transformation is complex because there are several conditions that have to be
checked before making sure applying it is safe. Whether the variable used for the iteration
condition is used inside the test, or how was the iteration build, from initialization to
updating, how many stop conditions there is, are all aspects to be taken into account
when applying this transformation.

The transformation is accomplished by extracting the for loop’s statements and its
information: initialization values, conditional expressions, identifiers (variable names)
used and update expressions. In order to simplify the manipulation and transport of this
data, a ForStatementData type has been created, aggregating them together. After the for
statement’s information has been extracted, the verifications mentioned above are carried
out. Then, the iteration count is inferred from the for loop. Only for loops with a single
condition statement and updated variable are transformed, and the update statement can
only be a simple increment of the counter variable. The condition, however, may be any
of the basic numeric comparisons. Listing 3.32 shows the RepeatedTest transformation
logic.

1 data ForStatementData = forStatementData(

2 map[Identifier, int] forInitValues,

3 StatementExpressionList forUpdateExpression,

4 list[Identifier] forUpdateIdentifiers,

5 list[tuple[Identifier id, str op, IntegerLiteral vl]] forConditionParts,

6 Statement statement

7 );
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8

9 public CompilationUnit executeRepeatedTestTransformation(CompilationUnit unit) {

10 unit = top-down visit(unit) {

11 case MethodDeclaration method : {

12 switch(extractForStatementData(extractMethodBody(method))) {

13 case just(forStmtData): {

14 if(isTransformationApplyable(forStmtData) && isSomething(

↪→ resolveIterationCount(forStmtData))) {

15 insert(declareTestWithRepeatedTest(method, forStmtData));

16 }

17 }

18 case nothing(): fail;

19 }

20 }

21 }

22

23 return unit;

24 }

25

26 public MethodDeclaration declareTestWithRepeatedTest(MethodDeclaration method,

↪→ ForStatementData f) {

27 IntegerLiteral iterationCount = parse(#IntegerLiteral, toString(unwrap(resolveIterationCount

↪→ (f))));

28 MethodBody newBody = parse(#MethodBody, unparse(f.statement));

29

30 Annotation repeatedTestAnnotation = (Annotation) ‘@RepeatedTest(<IntegerLiteral

↪→ iterationCount>)‘;

31 Annotation regularTestAnnotation = (Annotation) ‘@Test‘;

32

33 return replaceMethodBody(

34 unwrap(replaceMethodAnnotation(method, regularTestAnnotation, repeatedTestAnnotation)),

35 newBody

36 );

37 }

Listing 3.32: RepeatedTest transformation

3.2.9 TempDir

Tests that involve external resources are often a problem, as they depend on external, and
usually uncontrollable and unreliable, state. Depending on this uncontrollable external
state is what constitutes the Mystery Guest smell. In the specific case of the usage of
files inside tests, JUnit offers an extension to provide temporary directories, providing
a safe alternative do deal with files while being certain one test case will not interfere
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with other test cases. The TempDirectory extension provides the @TempDir annotation,
which can be used to provide a file in a temporary directory, received as a test method
parameter. Listing 3.33 displays a test method containing the Mystery Guest smell by
using files, while listing 3.34 shows what the refactoring of this test smell using the @TempDir

annotation would look like.

1 @Test

2 public void mysteryGuestTest() {

3 File outputFile = File.createTempFile(

↪→ "report", null);

4 writeSomethingToFile(outputFile);

5 Assertions.assertTrue(outputFile.

↪→ length() > 0);

6 }

Listing 3.33: Test method containing
the Mystery Guest smell by using files

1 @Test

2 public void refactoredTest(@TempDir File

↪→ tempDir) {

3 File outputFile = tempDir.

↪→ createTempFile("report", null);

4 writeSomethingToFile(outputFile);

5 Assertions.assertTrue(outputFile.

↪→ length() > 0);

6 }

Listing 3.34: Refactored test method
using the @TempDir annotation

The implementation for this transformation is very simple, as it simply searches for in-
vocations of the File.createTempFile() method and replaces them for a tempDir.createTempFile

↪→ () invocation. If any of such invocations have been made, and consequently replaced,
a @TempDir File tempDir annotated parameter is added to the test method. Listing 3.35
contains the whole transformation code.

1 public CompilationUnit executeTempDirTransformation(CompilationUnit unit) {

2 unit = top-down visit(unit) {

3 case MethodDeclaration method => replaceTempFilesWithTempDir(method)

4 when isMethodATest(method)

5 }

6

7 return unit;

8 }

9

10 private MethodDeclaration replaceTempFilesWithTempDir(MethodDeclaration method) {

11 bool tempDirUsed = false;

12 method = top-down visit(method) {

13 case (MethodInvocation) ‘File.createTempFile(<ArgumentList args>)‘: {

14 tempDirUsed = true;

15 insert((MethodInvocation) ‘tempDir.createTempFile(<ArgumentList args>)‘);

16 }

17 }

18

19 if(tempDirUsed) method = addMethodParameter(method, (FormalParameter) ‘@TempDir File tempDir

↪→ ‘);
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20

21 return method;

22 }

Listing 3.35: TempDir transformation code

37



Chapter 4

TestAXE’s Efficiency and
Limitations

In order to assess the efficiency of TestAXE, an empirical study has been conducted.
By using the same data set built by Soares et Al. [3]1 and reverting to the commits
immediately before their commits have been made, it was possible to reuse their knowledge
of where the smells could be found on the selected code bases.

The empirical study consisted in applying TestAXE to the software projects analyzed
by Soares et Al. in the aforementioned data set. In order to speed up the process, three
Python scripts were written, and they can be verified on annexes I and II. The files
containing known test smells were aggregated in a separate directory, which would be
supplied as the --input_dir CLI parameter. This way, the analysis was made simpler
as every file was contained in the same directory. After analyzing the changes made
by TestAXE to each file, it was moved back to its original location on the original
software project and the project’s test suite was run, in order to assert that no errors
were introduced, nor the behavior of the test method changed aside from the refactoring
goals mentioned on chapter 3.

4.1 Empirical Study Results

The analysis of the study resulted in the confection of two tables, one associating each
project name to the efficiency metrics that were computed, as well as some important
information such as which transformations were applied successfully applied (true pos-
itives), which transformations were mistakenly applied (false positive), which transfor-
mations were not applied when they should (false negatives) and the git commits these

1https://github.com/easy-software-ufal/refactoring-test-smells-with-junit5/blob/main/Pull%
20Requests/Pull%20Requests.csv
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files were in. With these metrics, three measurements were computed to help visualize
the efficiency of TestAXE: (a) Precision, which measures how often the transformations
were correctly applied; (b) Recall, measuring how often were refactoring opportunities
missed; and finally (c) F1-Score (F1), for an overall performance. These measurements
are computed as shown below:

Precision = TP

TP + FP

Recall = TP

TP + FN

F1 = 2Precision × Recall

Precision + Recall

Table 4.1, also shown on the paper presented in chapter 2, aggregates results by test
smell and transformation. A reduced version of the table aggregating data by project is
shown on table 4.2, showing only the numeric measurements. The full version can be
found on github2.

Smell Transformation TP FP FN Precision Recall F1

Assertion Roulette AssertAll 97 0 41 1 0.70 0.83
Conditional Test Logic ConditionalAssertion 1 0 2 1 0.34 0.5
Duplicate Assert ParameterizedTest 0 0 21 0 0 0
Mystery Guest TempDir 1 0 0 1 1 1
Test Code Duplication RepeatedTest 4 0 0 1 1 1
Overall Result - 103 0 64 1 0.62 0.76

Table 4.1: Efficiency metrics by smell and transformation

Results have been discussed on the paper reproduced in chapter 2.

4.2 Limitations and Possible Improvements

There are several improvement opportunities and limitations on TestAXE. Some of
them will be discussed below grouped by the transformation that they belong.

4.2.1 Conditional Assertion

Limitation: detection of conditional test logic

Conditional Assertion currently only refactors test that contain nothing more than an if

statement inside its body definition. Therefore, if there are any statements outside of that
2https://github.com/alexander-p30/testaxe-empirical-study
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if statement, the transformation won’t be applied. Listing 4.1 shows an example of a test
method clearly contains conditional test logic, but won’t be refactored by Conditional

Assertion.
1 @Test

2 public void testMethod() {

3 int x = 5;

4 if(x == 5) runAssertion();

5 }

Listing 4.1: Test case presenting the Conditional Test Logic smell

This limitation is, however, by design, since it would require to implement finer control
on what these statements outside the if statement are doing, and whether they influence
or not the return value of the boolean expression of the if statement, which can even be
impossible in some cases.

Improvement: do not wrap boolean methods inside another boolean method

This transformation always creates a new method which returns the if’s conditional ex-
pression. However, this is not necessary if that expression is the invocation of a boolean
method defined inside the same CompilationUnit, as shown on listing 4.2.

1 public boolean isMonday() {

2 ...;

3 }

4

5 @Test

6 public void testMethod() {

7 if(isMonday()) runAssertion();

8 }

Listing 4.2: Test case using a boolean method as the conditional expression

4.2.2 ParameterizedTest

Improvement: detect assertion groups

Assertion groups that repeat the same assertion method could be refactored to a single
invocation of each assertion method. This would require, however, some form of verifi-
cation to make sure assertions do not interfere with each other. Listing 4.3 shows a test
method with a group of two different assertions being repeated that could be refactored
in such fashion.
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1 @Test

2 public void testMethod() {

3 Assertions.assertEquals(1, 1);

4 Assertions.assertEquals(2, 2);

5 Assertions.assertEquals(3, 3);

6 Assertions.assertNotNull(1);

7 Assertions.assertNotNull(2);

8 }

Listing 4.3: Test method with repated assertions for different values

4.2.3 RepeatedTest

Improvement: refactor for statements with more diverse update statements

Currently, RepeatedTest only refactors test methods that contain for statements that
update their iteration counter in a unary increment (i++; i += 1) or unary decremenet (i
↪→ --; i -= 1). The transformation would be more frequently applied if other forms of
updates were also to be accepted.
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Project TruePositive FalsePositive FalseNegative Precision Recall F1
Aeron 1 0 0 1 1 1
Cas 2 0 0 1 1 1
Jenkins 2 0 0 1 1 1
kafka 0 0 1 - 0 -
Seata 3 0 0 1 1 1
Camel 0 0 0 - - -
Tutorials 0 0 0 - - -
Quarkus 1 0 0 1 1 1
MyBatisGenerator 1 0 10 1 0.091 0.17
Dropwizard 6 0 0 1 1 1
Dubbo 21 0 3 1 0.88 0.93
Janusgraph 1 0 0 1 1 1
Javaparser 19 0 0 1 1 1
Jetty 0 0 4 - 0 -
Jmeter 0 0 0 - - -
Jodd 0 0 1 - 0 -
Cryptomator 1 0 0 1 1 1
Flowable 1 0 0 1 1 1
java_design_patterns 0 0 1 - 0 -
Mybatis_plus 4 0 3 1 0.57 0.73
Spring_boot_starter 0 0 1 - 0 -
Okhttp 6 0 0 1 1 1
Opengrok 2 0 3 1 0.4 0.57
Reactor_core 7 0 1 1 0.88 0.93
Sentinel 0 0 9 - 0 -
Simplify 1 0 6 1 0.14 0.25
Spring_framework 1 0 0 1 1 1
Spring_boot_admin 2 0 0 1 1 1
Disruptor 0 0 0 - - -
Checkstyle 1 0 0 1 1 1
Lettuce_core 2 0 8 1 0.2 0.33
Mybatis 2 0 0 1 1 1
Jsoup 9 0 0 1 1 1
Spring_petclinic 4 0 1 1 0.8 0.89
Halo 1 0 0 1 1 1
Mindustry 2 0 0 1 1 1
Zaproxy 0 0 1 - 0 -
Zookeeper 0 0 11 - 0 -
Overall Result 103 0 64 1 0.62 0.76

Table 4.2: Efficiency metrics by project
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Chapter 5

Conclusion

Software test code is as prone to the introduction of sub-optimal design and implemen-
tation as is software code. Sub-optimally implemented tests may hide problems on the
software it is testing, as well as degrading the maintainability of the test suite itself.
Attempting to solve that problem, TestAXE was conceived. Based on the refactoring
proposals made by Soares et Al. [3] for a set of test smells, TestAXE receives a git
repository directory and applies a series of transformations, of which the majority aim to
refactor a specific test smell.

In order to assess the efficiency of the transformations’ implementation, an empirical
study was conducted. The results of this empirical study shows that TestAXE has a
Precision of 1, which means that every transformation that was applied, was correct.
Although, a Recall of 0.62 shows that there is a lot of room to improve how broad the
cases in which the transformations are applied is. The overall F1 score of 0.76 highlights a
reasonable overall performance, considering that there are improvements to be made and
some limitations, being existent by design, might fixed with some losses on Precision.
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Annex I

Python Script to Clone Git
Repositories Used in the Empirical

Study

This python script clones all the repositories inside the Pull Request spreadsheet written
by Soares et Al. It clones each project and creates a symlink to the files containing the
test smell on the project’s root folder.

1 import csv

2 import os

3 import subprocess

4

5 def git(*args):

6 return subprocess.check_call([’git’] + list(args))

7

8 with open(’Pull Requests.csv’) as csv_file:

9 csv_reader = csv.reader(csv_file)

10 for i, row in enumerate(csv_reader):

11 if i == 0: continue

12

13 repository_name = row[0]

14 print(f’\n==========={repository_name}===========’)

15 repository_folder = f’{i}_{repository_name.replace(" ", "_")}’

16 if not os.path.isdir(repository_folder):

17 pr_url = row[3]

18 remote_repository_url = ’/’.join(pr_url.split("/")[:-2])

19 print(git(’clone’, remote_repository_url, repository_folder))

20 print(f’\nRepository {repository_name} cloned!\n==========’)

21 else:

22 print(f’Repository {repository_name} already present!\n==========’)

23
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24 smell = row[2].replace(’ ’, ’_’)

25 smelly_class_symlink_path = repository_folder + ’/smell_class_’ + smell

26 if not os.path.islink(smelly_class_symlink_path):

27 smell_class_path = os.getcwd() + ’/’ + repository_folder + row[1].replace(’\\’, ’/

↪→ ’)

28 print(f’Path: {smell_class_path}’)

29 os.symlink(smell_class_path, smelly_class_symlink_path)

30 print(f’Symlink for class with smell in repository {repository_name} ’ +

31 f’created at {smelly_class_symlink_path}’)

32 else:

33 print(f’Symink {smelly_class_symlink_path} already exists!’)

Listing I.1: Python script to clone repositories
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Annex II

Python Script to Aggregate Source
Code Used in the Empirical Study

This python script aggregates every project’s class test containing the known smell into a
separate directory, with every file put into a sub directory containing the original project’s
name.

1 import csv

2 import os

3 import subprocess

4 import shutil

5

6 def git(*args):

7 return subprocess.check_call([’git’] + list(args))

8

9 def mkdir(path):

10 try:

11 os.mkdir(path)

12 except Exception:

13 pass

14

15 aggregation_folder = ’0_all_files’

16 mkdir(aggregation_folder)

17

18 with open(’Pull Requests.csv’) as csv_file:

19 csv_reader = csv.reader(csv_file)

20 for i, row in enumerate(csv_reader):

21 if i == 0: continue

22

23 repository_name = row[0]

24 print(f’\n==========={repository_name}===========’)

25 repository_folder = f’{i}_{repository_name.replace(" ", "_")}’
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26 smell_class_path_on_csv = row[1]

27 smell_class_path = os.getcwd() + ’/’ + repository_folder + smell_class_path_on_csv.

↪→ replace(’\\’, ’/’)

28 smell_class_filename = smell_class_path.split(’/’)[-1]

29 destination_directory = f’{aggregation_folder}/{repository_folder}’

30 mkdir(destination_directory)

31 destination_path = f’{destination_directory}/{smell_class_filename}’

32 print(f’origin: {smell_class_path}’)

33 print(f’destination: {destination_path}’)

34 try:

35 shutil.copyfile(smell_class_path, destination_path)

36 except FileNotFoundError:

37 print(f’File not found! {smell_class_path}’)

Listing II.1: Python script to aggregate all test files containing known test smells into a
separate directory
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