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Abstract

We investigate some of the major achievements and limitations of the perturbative for-
malism in QFT and compare with alternative formulations and solutions in Algebraic

Quantum Field Theory that can lead to a more consistent theory of quantum fields.

Key-words: Quantum Field Theory. Mathematical Physics. Algebraic Quantum Field
Theory.
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Introduction

The success of the perturbative approach in QFT cannot be underestimated. Cal-
culations in QED reached astounding precision in the last century, with the predicted
value of the magnetic dipole of the muon, for example, sharing six decimal places with

the value experimentally measured:

(9 — 2)theor. = 233183478(308) - 107!

(9 — 2)eap. = 233184600(1680) - 10~

The same degree of precision however cannot be reached in QCD yet. Nevertheless,
the theory has been shown to be free of any ultraviolet divergences and to also contain
no free parameters. In addition to that, asymptotic freedom implies that at high energies

it becomes simple and perturbation theory is a good enough approximation.

Historically though, the process of renormalizaton for removal of divergences has

often been criticized. Dirac is famously quoted as having said that:

“..this so-called good theory does involve neglecting infinities which appear
in its equations, ignoring them in an arbitrary way. This is just not sensible
mathematics. Sensible mathematics involves disregarding a quantity when it
is small — not neglecting it just because it is infinitely great and you do not

want it!”

hinting that the current perturbative paradigm cannot be the final theory to describe
particles and fields. The perturbative series also has its limits when it comes to certain
aspects of QCD such as infrared divergences and confinement. Moreover, in the years
to come, many more mathematical inconsistencies would be found in the foundations of
perturbative QFT, one of the most important ones being Haag’s theorem, which led some
to pursue a different line of reasoning and attempt to derive QFT from rigorous axioms
and first principles, in what would become known as axiomatic quantum field theory. The
developments in this area eventually led to the creation of the flourishing field of algebraic
quantum field theory where ideas such as constructive quantum field theory and chiral

CFT provide a way to tap into the problematic nonperturbative sector of QFT.



12 Introducéao

The aim of this thesis is to provide a general introduction to nonperturbative
QFT, providing the main motivations and alternatives to solve the current challenges the
standard perturbative approach faces. We begin in chapter 01 with a review of standard
perturbative QFT, giving special attention to the renormalization procedure. We then
discuss the mathematical inconsistencies that lie in the foundations of the perturbative
approach in chapter 02 and conclude, in chapter 03, with an overview of algebraic quan-
tum field theory and how it provides a solid framework for investigating the problems

introduced before.
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1 Perturbative Quantum Field Theory

1.1 Canonical Quantization

In quantum field theory one deals with field variables ¢(x,t) which translate phys-
ical systems with an infinite number of degrees of freedom. For continuous systems like

these the Lagrangian can be expressed as:

L(t) = / d*x L(Pa; Duta), (1.1)

where £ is the Lagrangian field density. The action then takes the form:

g / dt / d*x L(ba, Oupa)

S = [ d'x L{oa, ). (1.2)
and the variation, requiring 0.5 = 0 leads to the Euler-Lagrange equations for fields:
oL oL
O|l=———|——=—=0. 1.3
(o)~ (-3

The development of Quantum Field Theory has been intrinsically connected to

the development of relativistic quantum mechanics. The first attempt at formulating a

relativistic theory of quantum mechanics was realized in the form of the Klein-Gordon
equation:

(0"0, + m*)p = 0, (1.4)

derived from the Lagrangian density:
1 Iy
L= 5(0N¢)2 — §m‘gz>2 : (1.5)

It was noted however, as early as 1925 by Klein, that the solutions of the equation led to
negative probabilities densities and therefore the usual wavefunction interpretation had
to be abandoned. If we expand the variable ¢ as:

3,

oct) = [ s om0 (1.6

we can rewrite the KG equation in Fourier space as:

s+ I+ )| oo =0 7)
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This equation is analogous to the harmonic oscillator equation of motion, with frequency

wp = /IpP = m?. (18)

From QM we know that to solve a problem as such, given by the Hamiltonian:

given by:

1 1
H = —p* + —w?¢? 1.9
2p+2w<b, (1.9)

it is appropriate to write the variables in terms of the so called ladder operators a and a':

1
v 2w

p= —z‘\g‘)(a —al), (1.10)

which in the continuous case, satisfy:

QSZ (a—|—a,T)7

lap, aly] = (27)°5 (p — p?), (1.11)
and whose corresponding action is shown to create or annihilate particles with energy wp:

[p) = \/2wpal,|0), (1.12)

provided the normalization condition to ensure the Lorentz invariance of the theory (PE-
SKIN; SCHROEDER, 1995):

(pla) = 2wp(2m)*6® (p — q). (1.13)

Therefore, the solution in position space can be written as:

o(x) = / @p 1 (ape®>* + al e PX) (1.14)
(2m)3 f2wp  © p ' '
That is, a sum of oscillation modes which is formally understood as the field. This pro-
vides us with an alternative interpretation for ¢. In a similar fashion we can rewrite the
momentum as: P
p N W ip-x —ipx
r(x) = /W(—z) 2 (ape™ — alie ) (1.15)

And one can verify the following commutation relations:

[p(x), 7(x")] = i0®) (x — x”). (1.16)

Promoting the field ¢ and momentum 7 variables to operators and imposing the
commutation relations are at the root of the quantization procedure. The same procedure
holds for vector or tensor fields, one promotes the field variables to operators and then
impose suitable commutation relations. We further illustrate this for the case of the Dirac
equation:

i O —map =0, (1.17)
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which arises from the following Lagrangian density:

£ = iy, — miby. (1.18)

The field variables can be expanded as:

S

Plx) = / %\/QLE > (apu’(p)e™™> + bgvs(p)eiP-X)

000 = [ LS e + o () ). (1.19)

This time the creation and annihilation opcrators must obey anticommutation rclations

in order to preserve fermion statistics:

{ap.ay} = {55} = (2r)°6) (p — @)™ (1.20)

And the relation between v and 7 is as follows:
{tha(x), ¥} (¥)} = 6@ (x = ¥)dup. (1.21)

The quantization procedure for nonabelian Yang Mills theories is more easily real-

ized within the path integral formalism, which we will introduce in the upcoming sections.

1.2 The Interaction Picture

In QM one often talks of the Schrodinger picture or the Heisenberg picture. In the

Schrodinger picture states evolve in time according to the equation:

U)s
dt

d

ih = H[)s, (1.22)
and operators are fixed. In the Heisenberg picture we have the opposite, states are fixed
and operators evolve in time according to the equation:

d o

—Opu(t) :

= [Hy, Oy ()] + <OOS>H. (1.23)

o

It’s easy to show that these two pictures are related via a unitary transformation of the

form:

OH (t) — ethOSefth

) = ") s. (1.24)
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In the interaction picture, also called the Dirac picture, both states and operators evolve
in time. This is the most useful picture to work with in QFT. The Hamiltonian is split

into two, with Hy governing the evolution of operators and H;,; the evolution of states.
H = Hy+ H;y,. (1.25)
The interaction part itself is time dependant, therefore:
Hipy = Mot Hype 0t (1.26)

And we reach the Schrodinger equation for evolution of states:

di)s
dt

ih = H[¢)s

] d e*iH()t »
Zh% = (Ho + Hing)se 1)

vy

n dt

= N Hipy)ge M),

d[¢);

= th
N

= H;(1)|¢)g. (1.27)

1.3 The Perturbative Series

The solution of Eq. (1.27) should involve a unitary time evolution operator U (¢, ty)
so that:

(W) =U(t, to)[¥(to))r (1.28)
And the problem is reduced to determining the operator satisfying;:
dUu
'LE = H;(t)U (1.29)

The solution is of the form U = exp(—iH t), or in power series form:

Ult o) = 1+ (—i) tdtlH[(t1)+(_i>2/ttdt1 Y A T{H () Ho ()} + . (1.30)

to 2' to
Where we introduced the time ordering operator, necessary for consistency considerations:
01 (tl)OQ(t2) t1 > to
T{O, (1)0s(t2)} = (1.31)
Og(tg)Ol (tl) o > 11

For the second term in the series for instance we have:

1 t i1 t 131
5 /t dty [ dtsTLH (8 Hi(ts)} = /t dty [ dtaHy () Hi (1) (1.32)

to
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Which can be formally interpreted as a consequence of the symmetry property of the

operator:

¢ t
?12 /dh ]dig cm-'ilc'fu;rétlre

to ty

l

ty

11
*_/‘dtl\/dt2

to to

covers on I}l"
to lower triangle

: —

to i

Figure 1 — Symmetry of time ordering operator. Ref. (PESKIN; SCHROEDER, 1995)

The perturbative series make it possible to calculate the fundamental objects in
quantum ficld theory, the correlation functions, or Green functions G™ (x4, ..., x,,) involved
in scattering processes. We’ll develop the appropriate formalism in the next section, but
for the moment we’ll illustrate the calculation for the two point correlation function
(QT{o(x)d(y)}?). To achieve this, first we need to realize that the ground state of
H|Q) has an overlap with the ground state of Hy, |0) so that:

e HT10) = ¢TI0 (Q]0) + > e T |n) (n)0). (1.33)
n#0
Now, by the Riemann-Lebesgue lemma we have that:

lim /b da f(z)e™ = 0. (1.34)

U—>00

So that the second term cancels of and the ground state €2 can be written as, after a small
time shift:
Q) = (et~ =1(Q10)) " U (to, —T)|0). (1.35)

And the two point correlation function becomes:

(Qa(2)d(y)12) = (|0[) P )= 5 (O|U(T, 2") b1 () U («°, y*) 1 (y)U (4", =T)10).
(1.36)
Upon normalizing. dividing by 1 = (©|€2) we reach:

(01T {1 (x)1(y) exp|—i [T dtH(t)]}]0)

(O|T{exp[—i [T dtH (D) }0) (1.37)

(QT{p(x)o(y)}2) =
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as it will be shown the term in the denominator is precisely the expectation value of the

S-Matrix in the vacuum.

1.4 The S-Matrix

In QFT we are ultimately interested in calculating scattering amplitudes, some-
thing which is achieved via the S-matrix. Assuming that the initial and final states of the

scattering process are eigenstates of the free theory, one can write:

m  (fIU (L, L)]i) = (f1S]8), (1.38)

tr—too
where the S is the S-matrix unitary operator. The valuc of the expectation value should
reflect momentum conservation, so that if we start with an incident particle beam com-
posed of states with k4, kg momentum and end with states with py, po, ... for momentum,

in order to enforce momentum conversation we should have:
(p1pa-..|S|kakp) = 2m)* 0D (ka + kg — Y py) - i (ka, kp — py). (1.39)

That is, we have a probability transition amplitude and the delta function translating the
momentum conservation of the scattering process. Once in possession of the amplitude,

it is easy to obtain the scattering cross section:

do 1 |p1| 2
- = M pB — 1.40
<dQ)CM QEAEB|'UA _UB| (277)44ECM’ (pAapB p17p2)’ ) ( )
and the decay rate:

dl = — — | [M(ma — pp)22r)*6W (pa — 1.41
which are crucial for the detection and study of particle resonances at large particle
accelerators.

Cross
section

E

Figure 2 — Typical shape of a resonance signal at a particle detector.
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The calculation of the transition amplitude is achieved via the comparison with
the results in the perturbative series, where each term will give a partial amplitude con-

tributing to the process.

S= 1T —Z/ H](.Tl)d4£171 —5/ / T{H[($1)H1($2)}d4xld4$2 +... (142)
SV(O) —00 +J—o0J—20

S S5(2)

We saw how the perturbative approach allowed for the computation of the corre-

lation functions, and how these are related to the S-Matrix via Eq. (1.38).

Since the terms in the perturbative series are reduced to the calculation of expres-
sions of the form (0|T(¢(x1)@(22)....0(2,)|0) , as in the two point correlation function, we

will develop a method for calculating such values in this section.

Taking scalar theory as an example, we will start by decomposing our field solution
(2.1.14) into:

¢1(x) = o (x) + ¢; (v).

where: 7 .
+ — . p —ip-X
¢I (37) / (271’)3 2Ep ap€
d3 1 ,
o7 (z) = / P al e™Px, (1.43)

PN
In this decomposition, the time ordered product T¢;(x)¢r(y) will be given by:
Tor(x)or(y) = b7 ()b (y) + &7 ()b, (y) + 07 (2)8; (y) + & (2)d; (). (1.44)

It is useful however to introduce a convention called normal ordering of operators, which
places all a, terms, terms that have vanishing expectation vacuum expectation value, to

the right, and therefore:

Tor(2)¢1(y) = o1 (2)d7 (y) + &7 )01 () + &7 ()07 (y) + o1 (2)¢r () + [0 (x), 61 ()],

(1.45)
The relevant term here is the commutator, which defines what is called a contraction:
1p(2)10(y) = [0] (), o1 (y)] for 2° > "5 [} (), o7 (x)] for y° > 2°. (1.46)

This term has a natural interpretation which is that of a propagator. One can think of a

particle that is created at one point and annihilated at the other.

1o(x)1¢(y) = Dr(x —y)
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The evaluation in position space yields:

d*p i
2m)4 p? — m? + e

Dp(x —y) = / ( e~ PE=Y), (1.47)

We now rewrite the time ordered vacuum expectation value as:

T{o(x)o(y); = N{o(z)o(y) + 16(x)1o(x)}. (1.48)

The more genceral result for n ficlds is called Wick’s thecorem and states that any

time ordering can be written as a normal ordering plus all possible contractions:

T{p(x1)p(x2)...0(xm) } = N{d(x1)P(x2)...0(xr) + contractions}. (1.49)

Considering for instance an interaction theory such as Yukawa theory, whose in-

teraction part of the Hamiltonian is given by:

4
Hi(x) —g%.

The linear part of the S-matrix then will involve terms such as:

1 2 1 2 1 2
(0| T{$1626364} 10) = + l N )
:;—:1 3 4 3 4

And the higher order terms in the S-matrix cxpansion will involve even more
complicated contractions, so that in general, the two point correlation function in terms

of diagrams is:

(Q T [¢(x)e(y)] 1)
= sum of all connected diagrams with two external points

;0,00 o

x y oy

Those are called Feynman diagrams.

One important aspect to keep into consideration is that only connected diagrams
contribute to the amplitude. That is to say that even though the disconnected parts of
the diagram below are possible results of a contraction, they aren’t directly involved in

the calculation of the correlation functions for scattering processes.
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880 %

Figure 3 — Disconnected parts of the Feynman diagram on the left, known as vacuum
bubbles.

This is related to the assumption we made earlier that the particle states during
scattering are eigenstates of the free theory. In fact, it can be shown that the element in
the denominator of Eq. (1.37) corresponds to the following sum of disconnected diagrams

which onc can interpret as transitions occurring in the vacuum:

(0] S 10) = exp ( 8 + @ + @ + )

Figure 4 — Disconnected diagrams corresponding to vacuum to vacuum transitions.

As it turns out, the numerator term in Eq.(1.37) is such that:

(0|T¢1...6,5]|0) = (> connected diagrams)(0[5]0). (1.50)

And so, dividing by (0|S|0) we see that the two point correlation function derived

earlier truly only depends on connected diagrams.

We now move on to a more complicated theory of interaction, namely quantum
electrodynamics, or QED for short, for which the interaction part of the Hamiltonian is
given by:

Hi(z) = —epy" A, (1.51)
Processes of interest described by this interaction Hamiltonian include for instance Comp-

ton scattering, associated to diagrams of this form in the expansion:

.p k'
ey T
ij“» ﬂw”‘ Lq ~
K S RN
k p'

Figurc 5 — 2-point functions involving the fermion and photon propagators, whosc ampli-
tude contributes to compton scattering.
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One important result of this theory was the calculation of the anomalous magnetic

moment of the electron, which we summarize below.

At the classical level the interaction between an electron and a magnetic field is
given by the following Hamiltonian:

2
D e

H=—+V(r)+—B-(L+g5S). 1.52

Y V) + =B (L4 8) (152

The g factor above measures the strength of the magnetic dipole interaction eB-S.

At around 1947 there was a disagreement between theory and experiment, with the valuc

arising from experiments showing that it simply couldn’t be an exact value like the one

of g = 2 theoretically predicted. The real value of g can actually be deduced from QED

diagrams. Consider for instance the tree level diagram below:

'I.JMF: = = —i‘t'T_t[i{;f'_gj"f"IHE'fh }

Ul Uk

Figure 6 — Tree level diagram for the process e (q1)A,(p) = € (g2)

Applying Gordon’s identity:

u(q2)(q) + g5)u(qr) = (2m)ii(g2)y"u(qr) + iu(g2)o" (¢7 — ¢3)u(q). (1.53)
We reach: p u
MY = —e (%) ag)ul() — 5 —ii(a2)p,o" ulq). (1.54)

The second term shows some spin dependence in the form of ¢#” and is what is actually
translating the magnetic moment at the quantum level. We can then identify g with the
coefficient of the term iu(qo)p, 0" u(q1) times 4m/e, so that at the tree level we reach
g=2. We are however interested in higher order corrections arising at the loop level that

could possibly account for the experimental results.

It can be shown that the most general expression is of the form (RYDER, 1996):

. o 2 ot 2
iMY = (—ie)u(q) [Fl (%) v+ 57 Do Fy (;;)1 . (1.55)

At tree level for instance as we have seen we have F; = 1 and F5 = 0.

The term that actually generates corrections for the magnetic moment at higher
orders however is F5 in the non relativistic regime, so that the problem is reduced to
calculating:

g =2+ 2F5(0). (1.56)
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And from the calculation of the diagram below:

Figure 7 — 1-loop diagram contributing to the form factor F,.

The value of F3(0) can be shown to be (RYDER, 1996):
F5(0) = —. (1.57)

So that we reach:

g=2+ % — 2.00232. (1.58)

This result was first achieved by Schwinger in 1948 and constitutes a major achievement

of quantum field theory.

1.5 The Path Integral Formulation

The same concepts developed so far can be approached via the so-called path inte-
gral formulation. The main idea is to write the total amplitude for a particle propagating
from x, to 7, as a sum of amplitudes for all paths possible that differ only by a phase

factor:

Ulg,anT)= >, €= /Dx(t)ei‘s. (1.59)

all paths

In the picture on the next page, all the paths labeled from 1 to 4 and differing
only by certain phases should contribute to the amplitude of the particle to go from point
a to b.
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b
t Z(t)

ox(t)

[a—

I

Figure 8 — In quantum mechanics, the amplitude to go from a to b should the sum of
amplitudes for each interfering alternative path that differ from another by a
phase. Ref (FEYNMAN; HIBBS, 1965)

Taking the classical limit into consideration it makes sense to consider the action

Slz] as the phase in question, so that:
U(zg,zp;T) = /Dm(t)ei§[x(t>]/h. (1.60)

In the case of a more general quantum system described by a set of coordinates ¢* and p'

the transition amplitude takes the following form:

Ulanas) = (1| DatoDp(0) ) esal [ ae(C'd = Hgs). (1)

This will allow us to write transition functions for quantum fields. In the scalar theory
case for instance it can be shown that the two point correlation function derived as an

example in Eq. (1.37), can be written as:

[ Dép(w1)d(wa) expli [2y d'wL]

QT ol)ole)l) = =5 i I diar]

(1.62)

In general however the correlation functions are obtained by what is called a gen-

erating functional, which is analogous to the partition function in statistical mechanics.

Z[J] = /quexp[i /'d4x(z+ 7o) (1.63)

In terms of the Feynman propagator, it can be written as:

Z[J] = Zyexp {—% / J(@)Ar(xz —y)J(y)d.d,| (1.64)
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where Z, corresponds to Z[J=0]. For ¢* theory for instance, we have:

exp [i [ L (57 ) dz] exp[— [ J(2) Ap(x — y)J (y)da dy]

] - (1.65)
{exp (i Lo (3575) d2] expl=4 S I @) Ar(e )T (y)do dyl |
Expanding the numerator term in the expression above in g to first order gives:
zg 1 6 \* 1
2 —= - dz dy). L.
-8 () @+ o] eoig [ @A - I a6

Which corresponds to:
2
{—3[AF(O + 6iAR(0 {/ Ap(z —x) )dx} + [Ap(z — x)J(w)dxrl} : (1.67)

and Ap(0) = Ap(z — x) corresponds to the closed loop:
(O — Ag(0).

So we see that:

[ . ( 3OO+61)<__Q_)<+X)dz]exp(-%JJ&FJ)

igf,_
—;?f( 300 )dz

- [1 - %j(al Oyt X)dz]exp(—%jmﬁ),

Z[] =

This gives us some insight on how the generating functional can be used to obtain

correlation functions. The two point correlation function for instance, corresponds to the

term:
OTote)stel0) = 201 (<150 ) (“isgts ) Ales (168)
which in terms of the propagators gives:
— iAp(z1 — 23) — gAF(O) / d2Ap(z — 2)Ap(z — 22) + O(g?), (1.69)
and as graphs:
=i -£_0 400
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In general, denoting the n-point correlation function by 7(z1, ...z, ), we have:

1 6z

- i_n5J(x1)...5J(xn) J=0 (1.70)

T(Z1, ... 2y)

Note how the terms in the generating functional expansion at our example above con-
tain disconnected diagrams, this constitutes a problem since as shown previously these
diagrams correspond to vacuum to vacuum transitions and don’t really interfere in the
scattering process. What we are interested then is a generating functional for connected
diagrams. It can be shown that such functional is related to Z[J] via (RYDER, 1996):

W(J] = —iln Z[J). (1.71)

And the functional derivation of this object defines the so called irreducible n-point func-

tions:

1 "WlJ]
i 6.J(x1)...0J (z,,)

o(x1,..wp) = (1.72)

J=0
which only gives risc to connected Feynman diagrams. A third object worth mentioning

is the effective action I' function, defined in terms of the Legendre transform:

W{J] = T[4 + / drJ(2)é(x), (1.73)

it can be shown that it corresponds to exactly the inverse of the n-point function, but
more importantly it only generates so called 1PI-irreducible diagrams, that is amputated
diagrams without external leg corrections (RYDER, 1996).

The formalism developed so far also holds for spinor fields, but one needs to take
into account that those follow fermion statistics, so that it is necessary to write the field

variables as:

Y(r) = Z’l/)z‘ﬁbz'(w)» (1.74)

where ¢;(x) are basis functions and 1; are anticommuting Grassmann numbers. The two
point function then can be written as (PESKIN; SCHROEDER, 1995):

J DiﬁDTE ¢(1’1)QL($2) expli ./EFT d%zﬁ(z’@ —m)y]
| DYDp expli [ da(id — m)y]

(QUT(1)9 (22)]Q) = : (1.75)

and the generating functional as a function of Grassmann-valued source fields 7(x), 7(x)
Is:
20,7 = Zyexvl— [ d'ud'y(i0 — m)y + i + b (1.76)

Analogously, one calculates correlation functions via functional derivation:

- —1_2-5 i6 S
OT a0 = 25° (=it ) (50 ) 2yt (L7
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In the case of abelian gauge theories such as QED, the gauge must be fixed during
quantization in what is known as the Faddeev-Popov procedure. Consider the action
for the EN field:

S = / d‘*:z:[—iFw,F“’“]

1 2 uv L AV
S = 3 /d%;Au(x)(a‘g’ — 0"0") A, (). (1.78)

Gauge freedom of the form:
, 1
A, = Au(x) + gﬁua(a?), (1.79)

implies that if one were to take the class of solutions corresponding to A;l(:c) = 0, that is
Au(z) = 19,a(x) the action would vanish and the functional integral [ DAe*MI would be
divergent.This problem arises from the redundancy of summing over all field configurations
that are gauge equivalent. In order to solve this one must fix the gauge. Let us adopt the

Lorentz gauge condition G(A) = 0, where:
G(A) = 0,A". (1.80)

This constraint is set in the functional integral in the form of a functional delta function
d(G(A)) in the term:

1= /Da(a:)é(G(Ao‘))det (5G§jm)> . (1.81)

So that the transition function is given by:

o (2907

) [ pate) [accn) 0

This procedure of gauge fixing carries over to non-abelian gauge theories, however
the determinant term in this case is dependant on the field and therefore will introduce
new degrees of freedom to the theory associated to what are called Faddeev-Popov ghosts
(PESKIN; SCHROEDER, 1995):

det <5G5(;4a)> - / DeDeexpli / d'25(—9"D,)c] (1.83)

One then is able to quantize all theories discussed so far and even calculate correlation
functions via the generating functional. It is important to mention however that the
path integral formalism with all its advantages is not completely equivalent to the usual
formulation derived previously and as we will see in Ch.02 the general intuition that is
behind the path integral as it was presented lacks a solid mathematical formulation in

respect to what exactly is meant by summing over all paths and so on.
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1.6 Renormalization

In the expansion presented in the previous section for scalar theory we encountered

g/ A L (1.84)

corresponding to the loop diagram:

terms of the form:

Figure 9 — 2-point loop function

And in second order even:

2 / d*p 1
T ) @) =) (o1 + p2— p)? —

corresponding to the following loop diagram:

P

P2

Figure 10 — 4-point loop function

It is clear that these diagrams produce divergent results. Simple power counting
of the momentum shows that the integral corresponding to the first one is a case of
quadratic divergence whereas the second one diverges logarithmically. The procedure for
making terms such as these finite is called renormalization and is a key aspect of QFT. It
can be summarized in three steps as follows. First the integral is regularized, which is to
say that is made convergent via special mathematical techniques and then the character-
istic energy scale, called the cutoff limit, is set. Once this is done, one needs to redefine
the coupling in the expansion, a procedure that can be carried out by slightly modifying
the original Lagrangian. If this step can be carried out, the theory is said to be renormal-
izable (COLLINS, 1984). The final step is to remove the cutoff limit, making the theory

independent of the energy scale.
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Let us illustrate each step in the case of scalar theory. The integral at Eq. (1.84)
can be made convergent via a trick called dimensional regularization. Integrating the ex-

pression in d dimensions and multiplying by a factor p*~% for dimensional considerations,

we have: i
Ty d 1
- , 1.86
1 / (2m) p? — m? (1.86)
To evaluate the integral we make use of the general result provided in (RYDER, 1996):
d? 1 1 T(n—-9) 1
& - N (157)
(2m)d (p* + D) (dm)42 T(n) A
reaching:
: 2-d/2
ig o [Amud d
— r{1—- 1.88
3272 <—m2> < 2) (1.88)
Now, defining € = 4 — d, one can use the expansion:
2
I'1-d/2)=T(-14¢/2)=——=14+~v+O(e), (1.89)
€
and the approximation a® = 1 + €ln a, to reach the regularized form of the integral:
L2 o9 2
gm gm Amp
1— 1 O(e). 1.90
1672 © 3222 l L n(—“/ﬁ)]_l— (©) (1.90)

Similar regularization procedures can be carried out for the 4-point function where it can
be shown that the integral at Eq. (1.85) reduces to (RYDER, 1996):
2‘92 Iue
1672

+ finite. (1.91)

These expression however are still divergent as ¢ — 0. To fix this at the level of

the Lagrangian we must add counter terms. For the 2-point function such term is:

gm? dm?
3272 2

Note that this term has the effect of introducing an interaction that effectively gets rid of

6L, = P = 0°. (1.92)

the divergent term:

P
= _18M — ism?.
167%¢
=
—g— = - 0] + 1!

For the four point function the counter term added to the Lagrangian should be:

1 3g2/f
6Ly = ——
2 41 1672¢

o (1.93)
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since it gives rise to the Feynman rule:

B 31'g2,u5
167
=
\@, = e + :O: + (2 crossed) + :)(,
Higher order terms also require counter terms such as:
A
So that the Lagrangian now becomes:
1+ A m? + om? ¢
2= (222 @ - I 1y B (199
and with the following redefinitions:
OB = \/ 240, Zy =1+ A,
m? + om?
- Zm ) Z2 = T o1 T AV
mp m m m2(1 + A)
1+ B
—= gZ Z —_ .
gB /’L 997 g (1 + A)2
We reach what is called the bare Lagrangian:
Lo = 20007 - "2g - 224 (1.96)
B 9 uw¥B 2 A1 . i

This bare Lagrangian is what actually constitutes the physical theory being tested
in QFT experiments.

An important consequence of renormalization is that the renormalized functions
must remain invariant under change of a regularisation parameter p. This result is ex-
pressed via the so called renormalization group equation:

0

0 0
g 9 _ O
o TP g, = milg) +mam(g) o T =10, (1.97)
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where:

_ 9y

B(g) = p o
om
m’Vm(g) = Ha'

A lot can be deduced about a theory from these expressions. In particular one is usually
interested in the asymptotic behaviour of the 3(g) function above. At the fixed point
B(g) = 0 the theory is scale invariant since g = const. and analyzing the behaviour
around that we can judge the validity of the perturbative expansion. For S(g) > 0 the
coupling incrcascs with the energy and the perturbative expansion becomes progressively

worse.

Big)=0

-

g(E) 4

Landau pole

~d 4 P

m Y

Figure 11 — Evolution of the coupling with energy for a positive beta function.

On the other hand, for #(g) < 0, the coupling decreases, effectively vanishing at
high energies. In this situation the perturbative expansion becomes better and better and

is what is known as asymptotic freedom:
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Blg)<0
gig) A

~dr 4

Y

r'lllm

Figure 12 — Evolution of the coupling with energy for a negative beta function.

Let us verify the asymptotic behaviour of scalar theory. We have (RYDER, 1996):

3
9329u6<1+ J )

1.98
1672 (1.98)
Therefore: P >
g g
—= = egu© ‘. 1.

Hap = CO1° F Tgmah (1.99)

In the limit € — 0, we reach the solution:
9o
g= ) (1.100)
1 — 2590 In (&)

Ho
So g increases with g and the theory is not asymptotically free.

In the case of QED, the calculation of the divergent loop diagrams pictured below
is quite involved and will not be carried thoroughly here.

k P
—
» pk P

Figure 13 — Divergent diagrams in QED: the electron and photon self energy along the
vertex function. Ref.(RYDER, 1996)

It is however interesting to investigate the asymptotic behavior of the theory as it

was done for the scalar case. In QED it can be shown that the coupling varies according
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to (RYDER, 1996):

o2
e = eué/Q (1 + 127‘r2€> . (1101)
In the limit € — 0, the beta function becomes:
de e?
M@ = 137 (1.102)

and as in the scalar theory case, the theory shows an increasing coupling constant with

increasing scale, so that it is also not asymptotically free:

2
20, — e* (ko)
e“(p) = PR TR (1.103)
672 HO
The singularity at:
( 67 ) (1.104)
T )

is called Landau pole and is particularly problematic since at this point the coupling
constant becomes infinite. QED is therefore no good at larger momenta. This is not to

say that the theory is not renormalizable however.

What about QQCD? Surprisingly enough the bare coupling in QCD follows the form
(RYDER, 1996):

2 2n
—gp? |1+ 2 (—11 —F) 1.105
gs = g l + T += )| (1.105)
where ng stands for the number of quark flavours. The beta function in the limit € — 0
is:

3

Blg) = - (_11+T>' (1.106)

Therefore, since np < 16, we have < 0, that is a decreasing beta function and g decreases

with the energy. Perturbation theory in this case is then a good enough approximation and
the theory is said to be asymptotically free. What at first glance seems like an advantage
actually produces a limitation when it comes to lower energy processes. The theory at
this scale, called the confining scale, can no longer be adequately studied since, noting
again at Fig. 12, it is plagued by infrared divergences. We shall return to this point in
chapters 03 and 04.






2 Problems of the Perturbative Approach

2.1 Mathematical Rigour and Inconsistencies

The problems lying at the foundations of QFT begin with the canonical quan-
tization procedure. For starters, ¢(z) is not a well defined operator, since although the
vacuum expectation value (0|¢(x)|0) = 0, we have a divergent value of ¢*(z) in the form
of (0|p(x)o(x)|0) = 6(x — x) = §(0) = oo. Which proves quantum fields defined in the
manner of QFT possess intrinsic short-distance singularities (STROCCHI, 2013). More-
over, if fields are to be well defined mathematical objects, they need to be regarded as

operator valued distributions, requiring smearing with a test function f(z):

= [ d'ef(x)o(x). (2.1)

In the interacting case, things are even more complicated and smearing is not enough to
guarantee the well-definiteness of the operators in question. Operations involving multi-
plying fields at a space time point are often undertaken without any regard to the fact
that they are distributions and must satisfy certain restraints if such a operation is to be

possible.

Something already mentioned about S-matrix theory is the assumption that the

eigenstates of the free theory are the same as the ones in the interacting theory.
|Wint) o 11_{% Se(0, £00)[Prree) - (2.2)

This is known as adiabatic switching and has the effect of switching off the interaction
outside of a compact region of spacetime. Although physically questionable since actual
interactions in physics are not at all “switched oft” anywhere, it does provides a way to

make the limit t — oo, tg — —oo well defined.

/ dt, e~ DT H (). Hy (). (2.3)

e—>0

The original Neumann-Liouville expansion for the S-Matrix at Eq. (1.42) is in
general divergent and requires a convergence factor. At the Hamiltonian level this is

achieved by multiplying the interaction part by a smooth function g(x):
H = Hpee + g(x)H; . (2.4)

Nevertheless, the adiabatic limit ¢ — 1, should be such that it allows the removal of the
switching at the end. The problem arises when one realises the failure of this limit to exist
because of infrared divergences (STROCCHI, 2013).



36 Chapter 2. Problems of the Perturbative Approach

One might argue that the problem is solved after renormalization, but as show
by Dyson that is not the case. Consider the renormalized perturbative expansion at the
origin:

F(e?) = F(0) + e F»(0) + e Fy(0) + ... (2.5)
The transition from positive to negative values should be easily achieved if the series in
question is smooth and analytic, but as it turns out the physics described by F(—e?) is
remarkably different from the positive one at Eq. (2.5) (STROCCHLI, 2013). This puts into
question the whole ethos of the renormalization procedure. It is difficult to reconcilliate

the outstanding physical predictions with the non-analicity of the perturbative series.

These problems aren’t absent in the path integral formalism either, where time
ordering isn’t present and there can very well be discontinuous or non-differentiable paths
so that the sum is not mathematically rigorous. The problem then becomes one of defin-
ing an appropriate measure for this infinite dimensional space of paths. To this date,
various approaches have been suggested (GLIMM; JAFFE, 2012)(CONNES; KREIMER,
2000)(HUANG; YAN, 2000), but the debate with mathematicians still lingers. We note
also that the path integral formalism is only equivalent to canonical quantization in the
cuclidcan formulation. The rcal Minkowskian QFT is expected to be obtained through

analytic continuation on the euclidean time of the n-point functions.

2.2 Haag's Theorem

The main idea behind Haag’s theorem can be summarized by saying that if a
theory contains the vacuum as the only euclidean invariant state and the fields obey equal
time canonical commutation relations, then the vacuums of the free Hamiltonian and the
interaction theory are the same, thus implying a free theory. In conclusion, interaction
theories are incompatible with standard properties of QFT. In order to sketch a proof
that this is indeed the case, let us list the assumptions exactly and see how it turns out
for the scalar case (STROCCHI, 2013):

i) the three-dimensional Euclidean group is implemented by unitary operators U(a,

R), under which the fields transform covariantly, e.g., for a scalar field:

U(a, R)o(x,)U(a, R) = ¢(Rx + a,t)

ii) the vacuum is the only Euclidean invariant state,

iii) the fields obey equal-time canonical (anti)commutation relations and their
representation is a Fock irreducible representation, the vacuum state ¥, and the Fock

no-particle state Wy coincide.
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Now consider the Fock no-particle state ¥op obeying a(f)¥or = 0. We have:
a(f)U(a, R)*Vor = U(a, R)*a(f, R)¥or = 0, (2.6)

and since U(a, R)*Wyp obeys the Fock condition it must coincide with Wop apart from a
phase factor. On the other hand, the phase factor provides a continuous representation of
the euclidean group, but for this case in particular there is no other representation other
than the trivial one, so that the phase must be w = 1. This implies that Wz is invariant
under the euclidean group, but since by our assumption the vacuum of the free theory is

the only euclidean invariant state, ¥or must coincide with it.

In the more general version of Hall and Wightmann none of the fields are actually
required to be free (FRASER, 2006). Let us consider two Hilbert spaces hy and hy each
ecquiped with a representation of the euclidean group Dj(a, R) (j = 1,2).So that:

Dj(a, R)6;(2)Dya, R)! = ¢5(Ra + ). 2.7

Assuming there are invariant states ¢y; € h;, such that D;¢g; = ¢o; and considering the
two theories are related via an unitary map ¢1(z) = V~"t¢y(x)V, we have:

Di(a, R) =V~ Dy(a, R)V . (2.8)

The map V' : hy — hy does not need to be trivial, however in the calculation of the n-point

functions we have:
(Go1| 1 (21)...01(20) | Po1) = (V dor|pa (1) V..V ho(,) [V dor )
= (001 |V ™ da(21)V.. VT o (2) V)

= (Go2| P2 (1)...02(5) | Bo2)- (2.9)

So the n-point functions coincide and we can’t have a consistent theory of interaction.
Haag’s theorem can be circumvented by quantizing the theory within a finite volume
region(KLACZYNSKI, 2016). By considering an expansion of the form:

Z NoIoh Ek “the gl ety (2.10)

the vacuum overlapping problem is avoided. The obvious consequence however is the loss

of the full Poincaré invariance of the theory.

2.3 QFT at High Energies

In the standard model particles acquire mass via the Higgs mechanism which

requires a non vanishing vacuum expectation value for H at the minimum of the potential:

V =my|H|* + \H|" (2.11)
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So that (H) = y/—m% /2 and given the experimental value of around (H) = 174 GeV for
the vacuum expectation value, we reach A = 0.126 and m?% = —(92.9 GeV)?. The problem
however is that this particle receives corrections from every particle that it couples to in

the SM Lagrangian.

=== ---- \ !

Figure 14 — Corrections to the term m? due to the Higgs coupling to a fermion and to a

scalar. Ref.(MARTIN, 1998)

The contribution from the first diagram in the picture above for instance, corre-
sponding to the coupling of the Higgs with a fermion f yields the correction:

A
Am3, = JSTJ;‘A%V + ... (2.12)

We see then that this term is proportional to the square of the momentum cutoff. The
problem is that at high energies such as those around the Planck scale M, = 1/ V8rG =
2,4 -10'® GeV this quantum correction to mj} is 30 orders of magnitude larger than the
required value of m?% ~ —(92.9 GeV)2. It is immediate to note that this difficulty stems
from the fact that the correction is quadratically divergent. Comparing this to the electron

self energy in QED, we see just how the problem differs.

-

s

Figurc 15 — Elcctron sclf ecnergy in QED

Here the two point function is given by:

Pk i g
Wee(o) - / (271_)4(_267#)]6_—”%(_2’671/)7
L [ dik 1
— 2 : i
[ 2m )8 120 — 2y K+ me)y

d*k 1
_ —462me/ R o) (2.13)
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And even if we consider the integral evaluated at the Planck scale, we only obtain a

modest correction, since it is only logarithmically divergent (DREES, 1996):

M
Am, = 22, log =2 ~ 0.24m, . (2.14)
m

e

The divergence of Am? however is a much more serious problem since all the masses
of the standard model are sensible to the vacuum expectation value. It also exemplifies a
deep issuc on how gravity and the weak force differ. The disparity between these valucs is
what is known as the hierarchy problem and it tells us that there is likely new important
physics happening at the Planck scale that can’t be adequately described by the current

perturbative paradigm.

2.4 QFT on Gravitational Backgrounds

The formal description of quantum fields on curved spacetimes only received proper
attention in the late nineties thorough a series of papers by Wald and Hollands (HOL-
LANDS; WALD, 2015), where it was realized that in order to generalize the Haag-Kastler
axioms to arbitrary space-times two further axioms had to be introduced, namely Einsten
causality and the time-slice axiom (FEWSTER; VERCH, 2015). The first requircment of
causality reflects the necessity of the commutativity of observables localized in space-like
separated regions and the second one allows one to describe the evolution between differ-
ent Cauchy surfaces. The interplay of these two additional axioms with local covariance,
is what induces the notion of relative Cauchy evolution and provides the theory with a

dynamical structure.

Another big problem in QFT in curved spacetimes refers to the difficulty to charac-
terize vacuum states. In QFT on Minkowski-space Poincare covariance is the requirement
which allows one to single out the vacuum state, but in curved spacetimes things aren’t
so easy and one needs to seek a notion of invariant state on the locally covariant setting

(FEWSTER; VERCH, 2015).

It is worth mentioning that QFT in curved spacetimes is in no way a description
of quantum gravity, the background is classical and the quantum nature of gravity itself

is assumed not to play a crucial role on the fields propagating in it.

Any attempt at a quantum description of gravity within standard perturbative
QFT must face the problem of the non-renormalizability of Einstein’s theory. The fact
that G is a non-dimensionless physical quantity possessing dimension inversely propor-
tional to the mass [G] = [M~'L37T72] implies that the higher powers of the Riemann
curvature tensor present in the perturbative series can’t be supressed with a finite num-

ber of counterterms and instead yield an infinite number of divergent diagrams (KIEFER,
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2012). Although non-perturbative approaches to quantize gravity have recently been un-
dertaken such as LQG, CDT and others, these models still suffer from a number of open
issues (cf. (ASHTEKAR, 1993), (KIEFER, 2006)).
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3 Algebraic Quantum Field Theory

3.1 Wightman Axioms

The idea of formulating a system of axioms for QFT can be traced back to Wight-
man in 1964 (STREATER; WIGHTMAN;, 1989) in which the primary focus was the field
and quantum observables were assigned to operator-valued distributions. In essence, one
reconstruct the entire theory through vacuum correlation functions, the so called Wight-

man functions, satisfying the axioms:

W1 W(xy,...,z,) = (Yo, 0(x1)...0(x,)100) are tempered distributions.
W2 (Covariance) W(xy,..x,) = W(&, ..6—1) = W(&) = W(AE), & =41 —
W3 (Spectral Condition) The support of the Fourier transform W of W is contained in

the product of forward cones, i.e.,
W(ql, ...qn) = 0, if, for some j,¢q; ¢ V. (3.1)
W4 (Locality)

W(fl’)l, vy Ty T i1y ...CC,,,,) = W(l'l, vy Tjg1, T,y ...CL’,,,/), if (xj — I‘j+1)2 <0. (32)

W5 (Positivity) For any terminating sequence f = (fo, f1,.../n), [; € S(RY) one has:

Z/da; dy fi (s, 1) fo(yr, - u) Wz, o, 91, yk) >0 . (3.3)
Gk

W6 (Cluster Property) For any spacelike vector a and for A = co:

W (z1, .o, Tj, Tjg1 + Ay .ty + Aa) = Wz, ) W(zj41, .. 20) (3.4)

Since the vacuum correlation functions are all that is needed for the computation of the
S-Matrix elements, the Wightmann functions become the privileged objects in which the
theory is built. Indeed, Wightman’s reconstruction theorem asserts that in order to ex-
hibit a relativistic quantum field theory model, it is enough to give a set of Wightman
functions satisfying W1-W6. One obtains in this way a non-perturbative substitute for
canonical quantization. Wightman’s landmark paper then went on and further showed
how one can derive both the spin-statistics theorem and the PTC theorem within this
formalism (STREATER; WIGHTMAN, 1989). One thing worth pointing out though is

that Haag’s theorem remains a problem, though this time it manifest itself as a direct
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consequence of the analicity of the Wightman functions.

Theorem: Let ¢(z,t) be a relativistic scalar field with vacuum state Wy, satisfying:
I) At any time t is unitarily equivalent to a free field ¢;(x,t) of mass m with corresponding
Fock vector Vg (t)

oo, 1) = V' (Dor (5, )V (1) (3.5)

II) Ug =V (t)*Up(t), then ¢ is a free field of mass m.
Proof: We may consider a Lorentz transformation so that z{; = 0 and therefore the two

point function is:
W(y—x)=W(y —2,0) = (Vr(t), ¢:(2, )1 (Y, ) Vr(t)) =
= iAT(2 — o, 0;m?) = iAT(x — y;m?),
given that the propagator is Lorentz invariant. The two-point function therefore coin-

cides with the free two-point function and spacelike points, which we can generalize to

everywhere by the analicity of Wightman’s functions.

3.2 Haag-Kastler Axioms

Contrary to Weightman’s formalism, Haag’s axioms place emphasis on the algebra
of local observers. To the set of all observables belonging to a finite region O (an open set
in Minkowski space) we associate an algebra O — A(Q), called the algebra of observables,

satisfying:

A1 (Isotony): Whenever O; C O, the corresponding local algebras are nested:

A(O1) € A(Os) . (3.6)

A2 (Einstein Causality) If O; and O, are causally disjoint then:

[A(01), A(O2)] = 0. (3.7)

A3 (Poincar¢ Covariance) To cvery identity connected component Py of the Poincaré

group, there is an automorphism «(p) of A(M) such that:

a(p) : A(O) — A(pO) . (3.8)

A4 (Existence of Dynamics) If O; C Oz and O; contains a Cauchy surface of O, then:

A(Oz) = A(O) - (3.9)
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In summary, we have that all the relevant information is contained in the net of
observables which satisfies some fundamental principles of locality. We point out that it
was indeed this notion of locality that motivated Haag in the late 50s, so much so that
the theory was initially referred to as local quantum field theory (HAAG, 1992). The

prototypical region satisfying the axioms is the double cone:
O={(t,z) e R*: |t| +||=|| < lo} . (3.10)

It is clear from the picture below for instance that it is casually convex:

Figure 16 — Double cone region as an example of a causally convex set. (FEWSTER;
REJZNER, 2019)

Furthermore, Einstein causality implics that clements of algebras of spacclike sep-
arated regions will commute, having the simple intuitive interpretation that two spacelike
separated laboratories should not be able to communicate. An experimenter situated in
one of the laboratories should be able to conduct experiments independently of the action

of an experimenter in the other region.

The question remains however on how one can recover standard quantum me-
chanics in this formalism, what we shall address now. Haag’s key insight stemmed from
his own theorem on the inexistence of the vacuum which made evident the importance
of separating the construction of observables from the construction of states. In AQFT,
observables are represented by Hermitian elements of a C*-Algebra and physical states
are represented by states on this algebra. We can make this more explicit by considering
the family of linear functionals w : A — C, for which we require w(A*A) > 0VA € A
and w(1) = 1. The state is mixed if it is a convex combination of distinct states and pure
otherwise. Algebraic states are in fact, not so different from the ones in the usual Hilbert
space setting. The theorem that allows us to connect these two concepts is no other than
the famous GNS representation theorem (FEWSTER; REJZNER, 2019).

Theorem: Let w be a state on a unital *-algebra A. Then there is a representation
(Hy, Dy, m,) of A and a unit vector Q, € D, such that D, = m,(A)€, and:

W(A) = (Qu|r (D)), VA€ A. (3.11)
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What about scattering theory? First, we need to discuss how multiparticle states
can exist within AQFT. Essentially one would like to create these states by acting on the

vacuum through products of local operators:
Uy () = Ai()...Au(t) .Q (3.12)

The key difference to stress here however, is that in QFT states can be deeply entangled,

as guaranteed by the Reeh-Schlieder theorem:

Theorem: Let O be any causally convex bounded open region. Then:
I. Vectors of the form AS) for A € m(A(O)) are dense in H
I1.if A € 7(A(O)) annihilates the vacuum, AQ = 0, then A = 0.

The fact that states are dense in O implies that really the entire state vector space of
the ficld can be obtained from mcasurcments in an arbitrarily small region of spacc-time.
That is to say that for any two regions 01, Oy , no matter how far apart, there are many
projections in the corresponding local algebras that are positively correlated in the vac-
uum state. Being more explicit, this has the effect that any experiment performed locally
within a region may affect a different region of spacetime. Although this may appear to
be in direct conflict to relativistic causality, it does not imply that matter and energy
carried by a quantum field can travel faster than light and therefore the conflict is just
apparent (VALENTE, 2014). To conclude the discussion on scattering, we point out that
the existence of asymptotic states in the limit below can be shown to exist (BRUNETTI
et al., 2015):

tl}?x Aq(t).. . AL()2 . (3.13)

And the condition of adiabatic switching becomes somewhat less arbitrary, as it actually
allows one to construct an algebra of observables associated to some bounded region, if
one chooses a test function g which is equal to 1 on some larger region (BRUNETTI et
al., 2015).

An interesting open problem worth mentioning is the equivalence between the
Wightman and Haag-Kastler formalisms. A partial answer to this problem was obtained
by Borchers and Yngvason at (BORCHERS; YNGVASON, 1992) where it was shown
that the nccessary and sufficient conditions for the cxistence of a local net of von Neu-
mann algebras corresponding to a given Wightman field can be formulated in terms of
strengthened versions of the positivity property (W5 in the text above). In essence, if the
smeared field operators are self-adjoint for real test functions and commute strongly, one
can define a local Von Neumann algebra M (O) generated by the bounded functions of
the field operators:

M(O) =A{F(¢(f))|F bounded, support f C O} . (3.14)
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3.2.1 Models of Interest

To illustrate the construction of models in AQFT we shall start with the simplest

case of the free scalar field:

O+m*¢=0. (3.15)
Denoting by E the Green function propagator ¢ = Ef which solves the inhomogeneous
equation:
(B +m?*)e = [, (3.16)
we may write:
B(f.9)= | J@)(Eg)a)da. (3.17)
and the integral kernel will be given by:

/ d®k sink(x —y)
(

200 2]+ me
The quasi-local algebra A(M) in this case can be constructed by the distributions ¢(f)
where the test functions f, g € C5°(M) satisty:

E(x,y) = — (3.18)

P1 (Linearity) f — ¢(f) is complex linear.
P2 (Hermiticity) é(f)* = ¢(f).
P3 (Field equation) ¢((O +m?)f) = 0.
4 (Covariant commutation relations) [¢(f), ¢(g)] = iE(f, g)1.

Imposing the axioms above is equivalent to Dirac’s quantization procedure. Next, we
shall define for each causally convex open bounded O C M the algebra A(O) generated
by elements ¢(f) for f € C3°(O) along with the unit 1. Therefore, it is clear that if
O, C Oy we have A(Oy) C A(Oz) and it follows that axioms Al and A2 are satisfied.
Einstein causality arises as a consequence of E(f,g)=0, when f and g have causally disjoint
support. Poincaré covariance is a manifest consequence of the covariance of E and the

existance of dynamics can be shown as follows.

Theorem: Let O; C O; such that O; contains a Cauchy surface of O,. Then any so-
lution ¢ = Efs for fo € C3°(0O2) can be written as ¢ = Ef) for some f; € C5°(O1).

Proof: Take f; = Px¢ where x € C°(0O,) vanishes to the futurce of one Cauchy sur-
face of Oy contained in O; and equals unity to the past of another. Then ¢(f2) = o(f1),
which implies A(Oy) = A(Oy).

Now we’ll consider a slightly different example, the case of a scalar field with external

source, the so-called Van Hove model:

O+ m*)g,=—p. (3.19)
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We define the smeared fields as:

ﬁbp(f) - Qb(f) + pr(f)]l . (3-20)

The relations that must be imposed now are:

P1 f — ¢,(f) is complex linear.

P2 ¢p(f)* = (bp(f)
P3 ¢,(0+m?)f)+p(f)1=0.
P4 [¢p(f)’ ¢p(9)] = iL(f, g)L.

it is more favourable now to consider the Weyl algebra satisfying:
P1 W (0)" = W(~9).
P2 W(o)W(¢') = e7*V2W (¢ + ¢).

to construct the quasi-local algebra. We note that this is valid, given that:

(€#UN)F = ¢~ 19U) = (id(-D), (3.21)

and:
IO itla) — io(F)+idlo)—[6(N).H(0)l/2 _ —iE(f.0)/2,i0(f+0) (3.22)

We can then go on and construct local algebras by defining W (O) as the C*—subalgebra
generated by W ([f])’s with suppf C O and O being any causally convex open bounded
subset of M. It can be shown analogously that this algebra satisfies the axioms A1-A4 of
AQFT (FEWSTER; REJZNER, 2019).

Lastly, we shall consider an interacting theory. In particular, we are interested in
one of the very first models constructed by Glimm and Jaffe in the late 60s, the two-
dimensional ¢* model (GLIMM; JAFFE, 1968). Consider the cut-off interacting Hamil-

tonian operator:
H(g) = Hy + A / L 5(0,2) : g(z) d . (3.23)

The free scalar hermitian Bose field ¢(t, x) and the canonically conjugate momentum field

7(t,x) = 0p(t, x)/Ot satisfy the commutation relations:

do(f)mo(g) — molg)o(f) = i(f, 9)1, (3.24)

$0(/)Po(g) — do(g)0(f) = ma(f)ma(g) — mo(g)mo(f) = O, (3.25)

and once again our algebra of observables will be generated by the set of Weyl unitaries:

{€i¢0(f)7€i7r0(f)|f c L2([R),S]1pp(f) C O} . (326)
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For any ¢t € R let O; denote the subset of R consisting of all points with distance less than
|t| to O. By choosing the cutoff function g to be equal to 1 on Oy, then for any A € A(O)

the operator:
0, (A) = 9 gpitH(9), (3.27)

is independent of g and is contained in A(O;). For any bounded open O € R? and ¢ € R, let
O(t) = {z € R|(t,z) € O} be the time t slice of O. We define A(O) to be the von Neumann
algebra generated by Usos(A(O(s))). This illustrates the procedure alluded before on how
the adiabatic limit may induce a net of local algebras. This formalism can then be shown
to satisfy both Haag-Kastler and Wightman axioms (SUMMERS, 2012).

The construction of a three-dimensional ¢* interacting theory is also possible and
has been carried out by Glimm and Jaffe but for dimensions d > 4 we incvitably run
into the issue of renormalizability. To put shortly, the ¢4 model is superrenormalizable in
d < 3, whereas in d=4 it is only renormalizable, and in d > 5 it is nonrenormalizable,
which makes the construction difficult. To be more specific, it has been shown that the
Glimm and Jaffe procedure carried out in two and three dimensions breaks down in 4D
and one is left with a free non-interacting theory. (SUMMERS, 2012)

3.2.2 Challenges in Algebraic Gauge Quantum Field Theory

The main issue with formulating gauge field theories in AQFT has to do with
locality. A gauge QFT consists of conservation laws and charges Q¢ which commute with
all the observables, so that the Hilbert space is decomposed into a direct sum of spaces

H, consisting of charged states:
HU — {Awu} .

These arc called the supersclection scctors of the theory. The problem arises when onc

considers the consequences of Gauss’ law for local gauge groups:
Q° = [ djsa.),

one not only has the conservation rule associated to the conservation law [Q®, H]| = 0,
but also a different commutator [Q%, A], for any local observable. As a matter of fact, a

charge carrying field possess the property:
(@, 9] =q9 .
On the other hand,by Gauss’ law:

Q.0(y)] = [ d*eljolw,0), 6(1)] = [@uc(E). 9(y))

where @, (F) denotes the flux at spacelike infinity of the field. If the quantities commute
at spacelike separations the right hand side should be zero, but on the other hand ¢(y)
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cannot have a non zero charge Q at infinity. Gauss’ law therefore implies a delocalization
of charged states, which goes against the principles of AQFT. To the present day, it has
been shown by Doplicher, Haag and Roberts that observables in a global gauge theory can
lead both to the gauge group and to charge carrying fields (HAAG, 1992) in agreement
to the axioms of AQFT, however an equivalent result for local gauge fields is yet to be

found, given the reasons presented above.

3.3 pAQFT, CFT and Beyond

There have been a number of major developments in AQFT in the past few years.
One solution to the problem of gauge theory that has been given attention recently is
Perturbative Algebraic Quantum Field Theory. The axioms within this formalism are
rephrased in terms of locally convex topological vector spaces with some additional struc-
ture. A classical field theory, on a spacetime M, is given by a net of locally convex
topological Poisson *-algebras B(O), each with sequentially continuous product and a

Poisson bracket to enforce locality.
|A,B] =0.

Moreover, the spectral condition is rephrased in terms of Hadamard states and the kine-
matics are derived within the usual Lagrangian formalism but with some modifications
to the configuration space, namely the introduction of the Peierls bracket. (BRUNETTI
et al., 2015)

Conformal field theories have also been studied within AQFT. The Haag-Kastler
axioms are shown to hold just fine for this case, having no need to introduce additional
"CFT axioms'. One needs however a way to translate the conformal symmetry of the
theory as a consequence of the AQFT axioms. One model in particular that has been
thoroughly investigated is the case of CF'T on the circle, it has been shown that a Mobius
covariant chiral QFT with a net of local algebras A([) defined over intervals on the
circle St is in agreement with the AQFT formalism. The possibility of holographic ideas
such as AdS/CFT to construct models is also something currently being investigated.
(BRUNETTI et al., 2015).

All of these developments, together with the program initiated by Wald and Hol-
lands on AQFT on curved spacetimes (HOLLANDS; WALD, 2015) form a topic of inten-

sive research today.
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Conclusion

In the first part of this thesis we’ve laid out the main problems with the standard
perturbative approach in quantum field theory. We then proceeded to show how algebraic
quantum field theory addresses some of these problems and explored the construction of
a few simple models. We abstained from providing too much detail and touching on com-
plicated topics such as AQFT in curved spacetimes and gauge theories within the AQFT
formalism as this was not the primary objective of this work. Any introduction to such
a vast topic as is AQFT is bound to leave a few many things behind, but it is our hope
that we managed to provide some intuition to some of the key ideas and concepts in this
field of great importance to theoretical physics. As Freeman Dyson once said (DYSON,
1972):

“These azioms, taken together with the axioms defining a C*-algebra, are a distil-
lation into abstract mathematical language of all the general truths that we have learned
about the physics of microscopic systems during the last 50 years. They describe a math-
ematical structure of great elegance whose properties correspond in many respects to the
facts of experimental physics. In some sense, the axioms represent the most serious at-
tempt that has yet been made to define precisely what physicists mean by the words ob-
servability, causality, locality, relativistic invariance, which they are constantly using or

abusing in their everyday speech.”
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