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Abstract

Optical Music Recognition (OMR) is a research field concerned with the analysis of music
notations on documents or digital surfaces. It is divided into two approaches: offline
OMR, which deals with the analysis of digitised handwritten scores, and online OMR,
which involves the analysis of musical notation written on a digital surface. Although
these tasks have been explored in the last years, both approaches still offer challenges and
research opportunities. The most promising results so far have been obtained by using
convolutional neural networks to classify musical symbols. However, taking advantage of
the recent development of self-attention architectures, this work presents a method for
recognising musical symbols in online and offline data using Transformers for image clas-
sification. Experiments were performed in order to validate the proposed method on six
publicly available standard datasets, namely Handwritten Online Music Symbols (HO-
MUS), Seoul National University (SNU) Dataset for Online Music Symbol Recognition,
Capitan_Score_Uniform, Capitan_Score_Nonuniform, Rebelo_real, and Fornés. Three
pre-trained transformer models were tested with the datasets and their performances com-
pared: BEiT from the Microsoft team, ViT from the Google team, and DEiT from the
Facebook team. The proposed method achieves recognition accuracy that is close to the
state-of-the-art researches, and thus proves to be a promising approach. In general, the
proposed method provided results above 98%, with the model using the DEiT architec-
ture showing the best performance in most cases. For example, DEiT achieved 99.12% of
the F1 score, exceeding the 97.48% score of the ensemble method proposed by Paul [1]
with Homus data.

Keywords: optical music recognition, omr, transformer, self attention, music, music
notation
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Resumo

O Reconhecimento Óptico de Música (OMR) é um campo de pesquisa voltado para a
análise de notações musicais em documentos ou superfícies digitais. Divide-se em duas
abordagens: OMR offline, que trata da análise de partituras manuscritas digitalizadas,
e OMR online, que envolve a análise da notação musical escrita em uma superfície digi-
tal. Embora essas tarefas tenham sido exploradas nos últimos anos, ambas as abordagens
ainda oferecem desafios e oportunidades de pesquisa. Os resultados mais promissores até
então foram por meio de redes neurais convolucionais para classificar símbolos musicais.
No entanto, aproveitando o recente desenvolvimento de arquiteturas de autoatenção, este
trabalho apresenta um método para reconhecimento de símbolos musicais em dados on-
line e offline utilizando Transformers para classificação de imagens. Experimentos foram
realizados para validar o método proposto em seis conjuntos de dados padrão disponíveis
publicamente, a saber, Handwritten Online Music Symbols (HOMUS), conjunto Seoul
National University (SNU) para Reconhecimento de Símbolos de Música Online, Capi-
tan_Score_Uniform, Capitan_Score_Nonuniform, Rebelo_real e Fornés. Três modelos
de transformadores pré-treinados foram testados com os conjuntos de dados e seus de-
sempenhos comparados: BEiT da equipe da Microsoft, ViT da equipe da Google e DEiT
da equipe do Facebook. O método proposto alcança uma precisão de reconhecimento
próxima das pesquias do estado da arte e, portanto, mostra-se uma abordagem promis-
sora. Em geral, o método proposto apresentou resultados acima de 98%, sendo que o
modelo utilizando a arquitetura DEiT apresentou o melhor desempenho na maioria dos
casos. Por exemplo, o DEiT obteve 99,12% de pontuação F1, superando a pontuação F1
de 97,48% do método ensemble proposto por Paul [1] com dados do Homus.

Palavras-chave: reconhecimento óptico de música, omr, transformador, auto-atenção,
música, notação musical
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Chapter 1

Introduction

Traditionally, music can be read and written using musical notation, like the modern
Western 1 2 music notation known today, which can be considered the universal language
of music. From using paper to computers, music can be written in music composition
software using the mouse or an instrument connected to the computer. Despite the
complexity and robustness that such software has gained over time, many composers still
prefer to express their new musical compositions using pen and paper for simplicity and
practicality. Sticking to a limited menu, predefined styles, and point-and-click mouse
actions can be tedious for artists. Consequently, the need for automatic recognition of
handwritten musical symbols led to the emergence of Optical Music Recognition (OMR)
as a research field for analyzing musical notations in documents [10].

Automatic analysis of musical notation images has been a long-standing task, as shown
by Blostein and Baird in [11], who presented an overview and critical analysis of the
problems and proposed solutions in the processing of music notation images from 1966 to
1990. There are two types of input data for OMR approaches and systems, referred to
in the scientific community as offline data and online data. The taxonomy of these two
input types is the main difference between the two domains. While one operates on static
images (offline), the other operates on input data from an electronic pen that is captured
over the time (online).

Typically, a OMR offline approach is divided into a four-stage pipeline [12]: (1) pre-
processing and binarization, (2) staff removal, (3) symbol localization and detection, and
(4) notation reconstruction. With the recognition of musical symbols and semantic recov-
ery of the set of individual elements of the recovered musical text, it is possible to create

1Western: Concerning European and European-colonized countries
2How did music notation actually begin, accessed: May 17, 2022

3
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digital files in the format MIDI 3, which can be processed, for example, by music software.
Some researchers have created small datasets proposing offline OMR methods, such as
Fornés et al. [13], who used Dynamic Time Warping (DTW) algorithm to classify 2128
handwritten musical symbols with seven clefs from modern and old (19th century) scores
of different authors. The same dataset was used by Nawade et al. [14, 15], in which the
recognition was performed by the K-Nearest Neighbor (KNN) algorithm. Chanda et al.
[16] extracted Freeman code histograms and Zernike moment-based features from offline
music notation data and classified them using Support Vector Machine (SVM). In another
work, Malakar et al. [8] used the texture-based feature descriptor Daisy.

To take advantage of the new tablet technologies, the OMR study area have also been
established in the online form, which processes musical notation as it is written on a
digital surface using an electronic pen to allow its representation in a digital format. This
process is similar to a continuous digitization of writing, converting the drawn symbols
into a computer-readable format. Such a research area is very similar to the field of
Optical Character Recognition (OCR), in which pen-based character processing has been
proposed by Plamondon and Srihari [17], Swethalakshmi et al. [18] and Zhang et al. [19].
OMR online is also a long-standing [20] area of study. Jorge [21] proposed a pen-based
online recognition method for 20 music symbols using a multi-layer perceptron classifier,
achieving a recognition accuracy around 80% on unseen test data. Miyao and Maruyama
[22] describe an online music symbol recognition method in which they used Freeman
string code to represent time series data and Dynamic Programming for the model-based
symbol recognition process. Lee et al. [23] proposed a approach using local and global
resources along with the Hidden Markov Models (HMM) classifier for a data set with 8
different musical symbols.

In the absence of online notation data sets, Calvo-Zaragoza and Oncina [24] created
HOMUS (Handwritten Online Music Symbols) and applied different methods online and
offline, comparing the recognition results, which can be dependent or not on the symbols’s
writer. Oh et al. [25] classified online music notation data in two levels: recognition of
strokes separately and recognition of symbols by combining the prediction of features
and other features of symbols. The features extracted from tracks categorized by the au-
thors include magnitude information, histogram of directional movement angles, and the
histogram of undirected movement angles. Particularly, the last two mentioned features
are based on the Oriented Gradient Histogram (HOG) [26]. The features extracted from
a symbol, combined with the recognition of the strokes, contain information about the
location and size of its composing strokes. Furthermore, Calvo-Zaragoza and Oncina [27]

3File MIDI is a file format that provides a standardized way to store, transport, and open musical
sequences on other systems. These files contain information such as note values, time, and track names.
Think of the MIDI file format as the musical version of a ASCII text file.

4



proposed another OMR method using finite state machines and dissimilarity measures. A
finite set of feature primitives was considered and then labeled data were used to learn a
language describing musical symbols obtained from isolated feature primitives. The traces
obtained as input were mapped to the probability of representing each of the primitives
considered. In addition, the authors also used a semantic model describing which musical
sequences are formally acceptable. Using both sources, the underlying image (offline data)
and the traces (online data), the approach proposed by Sober-Mira et al. [7] was able
to achieve an error of less than 4% in recognizing symbols with a Convolutional Neural
Network.

The development of OMR approaches or systems continues to be fraught with chal-
lenges, including poor quality notation, complex scores, overlapping symbols, and struc-
tural complexity [28]. In such a discussion, it is clear that music notation is a complex
system and requires specific approaches for its recognition, which makes it difficult to
obtain efficient approaches in addition to good accuracy. OMR is a rich and challeng-
ing research area. Moreover, to the best of my knowledge, there are no studies in the
literature that use transformers for classifying musical symbols. The transformer uses a
self-attention architecture, a state-of-the-art model proposed by Vaswani et al. [6] which
revolutionized the field of machine learning by eliminating recursion and convolution. For
these reasons, I was motivated to get to know and understand this field better in order
to contribute with new approach.

Considering the two data formats, this work proposes an approach for recognizing
musical symbols written with a pen on a digital surface (online data) and musical symbols
derived from digitized handwritten scores (offline data). The online data, defined by sets
of coordinates of the symbol traces, goes through a process to generate the images of the
symbols and then follows the same pipeline as the offline data. In other words, the method
does not consider the real-time acquisition of online data, but a set already prepared for
study purposes that follows the offline approaches when converted into a set of images.

1.1 Goals

This work aims to study the optical recognition of musical notes using transformer models
and to contribute with a method that can achieve promising results that can overcome
the recognition accuracy of the last generation techniques. In specific, this work aims to:

1. Study the field of optical recognition of musical notation symbols from online and
offline data;

5



2. Explore the transformer model for OMR, which has proven successful in natural
language processing and has recently been explored for images;

3. Identify improvements and new solutions to the task of optical recognition of musical
notation;

4. Propose an OMR approach that processes online and offline notation data, and
learns symbols using transfer learning with pre-trained transformer models “BERT
Pre-Training of Image Transformers” (BEiT) [9] inspired by the famous BERT
transformer [29], “Vision Transformer” (ViT) [30] and “Data-Efficient Image Trans-
formers” (DeiT) [31];

5. Test the models on six data sets of different nature and evaluate the recognition
performance.

In summary, the contributions of this research are:

1. A study on OMR and how transformer-based models can contribute to this research
area;

2. Contribute to OMR research by proposing a method with good performance for
classifying musical notation;

3. Propose an approach to musical symbol recognition that can be combined with other
OMR systems to create a complete OMR system.

1.2 Structure of the document

This document is organized as follows. Chapter 2 introduces important concepts for un-
derstanding this Final Paper. Chapter 3 briefly presents some recent work related on
symbol recognition and the employed transformer model. Chapter 4 describes the pro-
posed method and its constituting steps. Chapter 5 presents the experiments performed
to validate the proposed method and discusses the obtained results. Finally, Chapter 6
concludes the work and presents suggestions for future research.
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Chapter 2

Fundamentals

Musical notation is a writing system with well-defined rules and an extensive vocabulary
of definitions. Therefore, this chapter summarizes the most important basic definitions
that are required for understanding this work. In addition to musical notation, important
concepts of visual representation are also introduced, including the type of data in one
of the steps of the proposed method, as well as an explanation of the transformer model,
which is the core for image transformation and classification.

2.1 Musical Notation

Musical notation is a system of graphical representation of music that allows a musician
to perform an arrangement as envisioned by the writer. The symbols (notes and other
musical representations) are written on a set of five lines - the pentagram - and form a
score.

2.1.1 Musical note

A musical note is an isolated sound event that is usually employed in combination with
other events to form a musical text. The most important attributes of the note that can
be withdrawn in the score are:

• height: represents the oscillation frequency of the sound, which is higher (high
sound) or lower (low sound). Pitches are grouped and arranged in an ascending
order called the scale, and are represented by the position of the note on the staff;

• duration: duration is the temporal dimension of notes that describes the duration
(time length) or in what units of time the vibration occurs. The combination of
notes and rests with different durations in the staff forms patterns, i.e. the rhythm
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in music. The time lengths are represented by different symbols as depicted in Table
2.1;

• Intensity: is the parameter of sound that refers to the amplitude of the deflection of
the vibrating body or sound source. Intensity is represented by a gradation rang-
ing from molto pianissimo (minimum, almost inaudible sound intensity) to molto
fortissimo (maximum sound intensity that can be achieved without damaging the
voice or instrument), and is represented by abbreviations in the music sheets.

Table 2.1: Notes and Pauses corresponding to each duration.

Note Name Rest Count
¯ whole < 4
˘ “ half < 2
ˇ “ quarter > 1
ˇ “( eighth ? 1

2ˇ “) sixteenth @ 1
4

ˇ “* thirty-second A 1
8

2.1.2 Time Signature

The staff is divided into measures by vertical lines (bars) and determines the rhythmic
structure of the music. The time signature is represented by a formula in which the
denominator indicates the number of parts into which a whole measure must be divided
to obtain a single measure unit, in other words, it indicates whether a beat consists of
a half note (2), a quarter note (4), an eighth note (8), or a sixteenth note (16), and the
numerator indicates the number of beats that the measure contains. The Figure 2.1 shows
that there is a “four by four” measure, meaning that the time unit has a duration of 1/4
of the half note and the measure has 4 beats. In this case, a half note takes up the entire
measure.

Figure 2.1: 4/4 time [2]: the time unit has a duration of 1/4 of the whole note and
each measure must contain 4 beats. Thus, one beat corresponds to a quarter note, and
four quarter notes make a measure. The combination of different notes would result in
different rhythms.
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Musical notation is a complex writing system, comprising a set of graphic signs that
symbolize a cadence of sounds. The data sets used in this work contain several other
symbols. For a deeper understanding, a dictionary of musical symbols can be found on
the Dolmetsch platform 1. However, the definitions that were presented here are sufficient
to understand the data and the proposed method. In one of the processing steps of the
proposed approach, the strokes drawn by the pen are converted into images by the digital
surface. The next section details this process.

2.2 Image

Pixel, a combination of the terms “picture” and “element”, i.e. “picture element”, is the
smallest unit in a digital image. Each pixel of the image has a bit depth, which is related
to the number of color channels. The more bits per pixel, the more color possibilities and
higher color accuracy are possible. Example:

• An image with a bit depth of 1 has pixels with two possible values: black and white.

• An image with a bit depth of 8 has 28 or 256 possible values.

• Images in grayscale mode with a depth of 8 have 256 possible gray values.

• RGB images consist of three color channels. An RGB image presenting 8 bits per
pixel has 256 possible values for each channel, i.e. more than 16 million possible
color values.

An image can be represented by a matrix that contains the intensity values and whose
size is defined by the width and height of the image. In other words, if the size is
1920 × 1080 (Full HD), there are 1920 pixels horizontally and 1080 vertically. This means
that there is a total of (1920 ·1080) = 2073600 pixels. Generally, a color image has 3 color
channels: Red, Green and Blue, and each pixel is assigned 3 values as depicted in Figure
2.2. In this sense, an RGB image can display up to 16 million different colors. In addition
to RGB, the alpha channel can be considered the fourth element of color and determines
a pixel’s transparency. A grayscale image is represented by a 2D matrix, in which each
pixels is denoted by a single intensity value between zero and 255 (or between zero and
one for normalized values).

The number of pixels that defines an image, also called resolution, determines its
quality, and the more pixels, the higher the quality. For image processing tasks, how-
ever, working with high resolution images would result in high computational processing.

1Music dictionary, accessed: May 17, 2022
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Figure 2.2: Vector of one-pixel color channels in an RGB image [3].

Nevertheless, a high resolution is not necessary, because the shape of the image content,
especially in minimalistic and high-contrast images, can already be expressed by a few
pixels. For a better representation of the image, the the features extracted from the im-
ages can also be used as input to a classifier, instead of its raw form. This process is
called “feature extraction”.

2.3 Extraction of image features

Image feature extraction consists of determining the most compact and informative feature
sets for efficient image processing or storage. The most common and convenient way to
represent images in classification and regression tasks is to create feature vectors, where
each element represents a feature or attribute resulting from a quantitative or qualitative
measurement [32]. In this way, the sample is summarized in a table where each row
corresponds to an image and the columns represent the attributes. Attributes can describe
texture, contours, convexity, solidity, and other visual properties of the image. It is
desirable that the extracted features from an input image present invariance to rotation,
translation, and scaling so that classification is not affected by these transformations. The
main approaches to feature extraction are presented below.

2.3.1 Contours and Corners

Contours are curves that connect all contiguous points (along the boundary of an object
in the image) that have the same color or intensity, which in turn supports the shape
identification and the estimation of the object’s size. Therefore, contour extraction is
useful in object detection and recognition tasks. However, it may be useful and sufficient
to extract only the corners of objects that can be identified by the coincidence of two
edges, or other methods such as the Moravec detector [33] and the Harris detector [34].
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Alternatively, it is also possible to identify only the most important corners, called key
points, which can be found by the detectors Scale-invariant Feature Transform (SIFT) [35],
Speeded Up Robust Features (SURF) [36], which is an accelerated version of SIFT, and
Oriented FAST and Rotated BRIEF (ORB) [37] based on the Features from Accelerated
Segment Test (FAST) [38] and Binary Robust Independent Elementary Features (BRIEF)
[39] detectors.

2.3.2 Direction

Directional or gradient features can also be extracted from images. The magnitude of
the gradients in an image is very large at edges and corners due to the abrupt changes
in intensity. Therefore, the gradient of an image also contains relevant information about
the object’s shape. Directional features can also be extracted from the contour strokes of
an object by encoding them according to some predefined directions and grouping them
into a ”directional chain”. HOG [26] is an example of a descriptor that computes the
oriented gradient histogram of an image. The Freeman Chain Code (FFC) [40] computes
the representativeness of the boundary by a contiguous sequence of straight line segments
of certain length and direction, based on 4 or 8 predefined directions (codes), as shown
in Figure 2.3.

Figure 2.3: Freeman Chain Code, (a) starting from 0 to 7 and (b) code generated covering
up the image from the bumper back of the vehicle [4].

2.3.3 Region

Region-based descriptors have also been proposed for characterizing silhouettes of regions
and objects within an image. One of the simplest descriptors are the basic geometric
features, such as area (number of pixels in the shape), perimeter (number of pixels at the
edge of the shape), eccentricity (ratio between the length of the longest chord of the shape
and the longest chord that is perpendicular to it), elongation (ratio between the height
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and width of one of the smallest rectangles that the shape fits into) and rectangularity
[41]. The topology of the object can also extract information from the shape, which is
a property of the shape that does not change even if the parts of the shape are torn or
joined. A well-known topological property is Euler’s number E: the number of connected
components minus the number of holes H. Shape properties can be extracted by measuring
the number or size of concavities in the shape. To do this, the shape of the convex hull
itself is subtracted, resulting in holes (“pond”) or concavities (“bays”). This can be useful,
for example, when trying to distinguish the letter “O” from “C” in handwritten images.

2.4 Image classification

The human perceptual system allows to efficiently recognize objects, regions, and features
in an image in new situations based on previous experience. For a computer, however,
this image is denoted as a matrix of pixels. Therefore, Computer Vision has become
one of the hottest research areas and represents the biggest challenge for machines to
understand and make sense of digital images. In this sense, image classification is the
task of categorizing images into one of several predefined labels.

2.5 Artificial Neural Networks

Artificial Neural Networks (ANN) are a computational model loosely inspired by the brain
and the way humans learn. The perceptron, introduced by Frank Rosenblatt [42], is a
neural network in its simplest form, containing only 1 artificial neuron. The perceptron,
as shown in Equation 2.1 and Figure 2.4, consists of a layer of input data xi (in green),
a layer of weights wi (in lilac), a weighted sum that add all the multiplied values, and
an activation function. The layes also contais the bias x0, w0 (in yellow). The activation
function bounds the output amplitude of the neuron, i.e., the value obtained from the sum
is normalized within a closed interval, e.g., [−1, 1] or [0, 1] and represents the probability
ŷ of the outcome. Furthermore, the curve of the activation function is centered by an
appropriate bias value.

ŷ = f(
n∑

i=0
wixi + b) (2.1)

There are several activation functions, such as the ReLU, softmax, tanh, sigmoid,
among others, shown in Table 2.2. The sigmoid function looks like an S-shape and is
used to calculate the probability of an output, since each probability is in the range [0,1].
However, the ANN may not converge during training because the probability values are

12



x0

x1

x2

x3

Input layer
w0

w1

w2

w3

w4

Weights

∑n
i=0 wixi f(x)

Activation
Function

ŷ
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Figure 2.4: Perceptron ANN: a single neuron.

independent. Therefore, the softmax function is more recommended because it calculates
the relative probabilities. That is, the softmax function returns the probability values
for the membership of the data in each class. The tangent function is like the sigmoid
function, but maps the result to the range [-1,1], taking negative entries into account.
The ReLU function, on the other hand, maps the negative values to zero, which can have
a negative effect on training the data, but has the advantage of being computationally
more favourable.

Table 2.2: Non-linear activation functions.

Name Function Figure

Sigmoid σ(x) = 1
1+e−x

Tanh σ(x) = ex−e−x

ez+e−z

ReLU f(x) =
0 if x < 0

x if x ≥ 0.

Softmax f(x) = ex∑
i

ex

Later, Rosenblatt introduced the Multi-layer Perceptron ANN (MLP) [43], which com-
bines neurons in hidden layers. In this topology, shown in Figure 2.5, an input layer
receives the input data. Then, in the hidden layer, the outputs of the neurons serve as
input to the neurons in the next layer and the output layer that contains the outcome
probabilities (yi). This left-to-right process characterizes the network as a feedforward
network. In the hidden layers, an activation function activates the neuron or not, i.e.,
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it determines whether the information the neuron receives is relevant to the information
provided or should be ignored.
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ŷ1
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Figure 2.5: An example with a two hidden layers multilayer perceptron and input data
with three attributes (xi) and two labels (ŷi)

First, the weights are initialized randomly. Then David Rumelhart et al. [44] pre-
sented the backpropagation algorithm, which adjusts the network weights based on the
obtained and expected results. Thus, the training of the network proceeds as follows: af-
ter backpropagation, the predicted output is evaluated in relation to the expected output
using a cost function, which may be the mean square error function or the cross entropy.
The cost determines how much the weights must be adjusted to make the output approach
the expected output. Therefore, in the backpropagation step, the updates are propagated
from right to left in the hidden layers. In other words, backpropagation aims to minimize
the cost function by adjusting the weights and biases of the network.

The extent of network parameter updates depends on the learning rate, a configurable
hyperparameter used in neural network training that controls how quickly the model
adapts to the problem. Lower learning rates require more training epochs due to the
small changes made to the weights at each update and training may not converge, while
higher learning rates result in faster changes, require fewer training epochs, and may also
lead to the convergence of a suboptimal solution.

Network training occurs in learning cycles. Each cycle (forward propagation followed
by backward propagation) is called an epoch. For better generalization of the network,
the dataset is divided into batches. The batch size is the number of samples given to the
network at once. It also is a hyperparameter that must be tested and adjusted based on
the performance of the model during training.

For efficient image classification using neural networks, the Convolutional Neural Net-
work (CNN) was first developed by Fukushima [45], which introduces convolutional layers
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responsible for identifying features of an image. These layers can be seen as filters that
pass through the image, each layer looking for a particular feature (edges, texture, cur-
vatures, colors, etc.). Basically, a CNN consists of convolutional layers interspersed with
pooling layers and a regular neural network for classification purposes, as shown in Figure
2.6. The pooling layer reduces the data dimension, extracts dominant features that are
rotation invariant and position dependent, and suppresses noise. The most commonly
used technique is max pooling [46], in which the maximum value in each patch of each
resource card is calculated, thus retaining the most available resource in the patch.

Figure 2.6: Example of a CNN architecture [5].

The number of convolutional layers is proportional to the number of features extracted
from an image. However, this increases the cost of memory and processing and requires
the use of GPUs and parallel processing to speed up the training of the network. Indeed,
one of the drawbacks of CNNs is that a large amount of labeled data is needed to extract
the patterns. Therefore, there are researchers who prefer to extract features from images
using a computationally cheaper method and then use the result as input to a classifier
with a less complex structure, such as C-Support Vector Classification (SVC) or a simple
ANN. Another way to take advantage of CNNs success is to use architectures that have
already been trained on large sets of images for a particular task. This process is called
“transfer learning”.

2.6 Transfer learning

According to psychologist Judd [47], “Every experience has in it the possibilities of general-
ization”, and therefore transfer learning is the result of generalizing experience. Transfer
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learning consists of transferring knowledge between domains, and is a promising ma-
chine learning method to solve the problem that for effective training of a model, a large
database is needed [48]. For example, knowledge from a model trained to classify im-
ages can be used to classify images of vegetables. Using a model that already has some
“intelligence” when faced with a new and similar task helps to overcome the problem of
depending on large data for machine learning, which is not always possible due to the
scarcity or privatization of data. In this way, it is possible to use much less data for the
current task, speed up the training process and achieve accurate and effective results.

It is also important to note that transfer learning makes sophisticated and complex
models that require large resources, data, time, and computing power more accessible.
Therefore, in this work, this practice is applied because there are efficient pre-trained
models provided by consolidated research groups, some of which belong to Google [30]
and Facebook [31].

2.7 Transformer

To contribute to sequence modeling and transduction tasks, Vaswani et al. [6] proposed
the transformer, a model architecture that relies on an attention mechanism to draw
global dependencies between input and output, described in his famous paper “Attention
Is All You Need”.

The transformer model is based on an encoder-decoder architecture with two or three
sublayers, as show in Figure 2.7. The encoder consists of a stack of N = 6 identical
layers. Each layer has a sublayer with a multi-headed self-attention mechanism and a
sublayer defined by a simple, fully connected feed-forward network. There is a residual
connection and normalization between the sublayers. The decoder also consists of a stack
of N = 6 identical layers that, in addition to the multi-headed auto-attention mechanism
and feed-forward network, have a sub-layer that directs the attention of multiple heads to
the output of the stack encoder. Residual connections and normalization are also present
in the decoder.

2.7.1 Self-attention sublayer

In this layer, three vectors are computed from an input: Query, Key, and Value, and an
attention function maps these vectors to an output, as shown in Figure 2.8. In practice,
the attention function is computed simultaneously in a set of queries packed into an array
Q, where the keys and values are also packed into matrices K and V , as in the Equation
2.2, where dk is the dimension of the query and key vectors and T denotes the transverse
matrix.
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Figure 2.7: Transformer model architecture [6].

Attention(Q, K, V ) = softmax
QKQT

√
dk

V (2.2)

The query vector is the representation of a single piece of data (e.g., a word in text
data) for which self-attention is calculated. The key vector represents each part in the
sequence and is used to match the query of the part for which self-attention is calculated.
The value vector represents the real part. The dot product between the query vector and
the key vector gives the score that reflects the importance of each value, i.e., each data
unit, in the self-attention vector.
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2.7.2 Multiple Heads

Rather than running a single attention function, the authors found it beneficial to run the
described process multiple times with different weight matrices. In each of these designed
versions of queries, keys, and values, the attention function is executed in parallel. The
outputs are concatenated and re-projected, resulting in the final values, as shown in
Figure 2.8 and by the Equation 2.3. Each projection is called a head, and each head
learns information from different representative subspaces at different positions in a given
sequence.

MultiHead(Q, K, V ) = Concat(head1, ..., headhh)W O

where headi = Attention(QW Q
i , KW K

i , V W V
i )

(2.3)

Figure 2.8: (left) Product scales - Attention Layer. (right) Multi-Head Attention with
multiple layers of attention working in parallel [6].

2.7.3 Feed-Forward

Each feed-forward network consists of two linear layers with a ReLU function 2.5 between
them, as shown in Equation 2.4. The weights and offsets W1, W2, b1, and b2 are applied
identically to each position. However, each encoder and decoder layer has its own feed-
forward layer:

FFN(x) = max(0, xW1 + b1)W2 + b2 (2.4)

where Wi represents the weight layers, x the input and bi the bias values of the i layers.
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2.7.4 Positional Encoding and Mask

Since the model does not contain any recursion or convolution where it is possible to know
the order of the input sequence, a positional encoding is added to the input embeddings in
the encoder and decoder, computed by the sine and cosine functions. Also, some positions
in the decoder input are masked by keeping only the words up to the current positions
that the decoder knows, since it cannot know the future positions. The authors Wasvani
et al. use the sine and cosine functions with different frequencies, presented in Equation
2.5,

PE(pos,2i) = sin(pos/100002i/dmodel)
PE(pos,2i+1) = cos(pos/100002i/dmodel)

(2.5)

in which pos is the position, i is the dimension, and dmodel is the dimensionality of input
and output. Thus, each dimension of positional encoding corresponds to a sinusoid. The
authors chose these functions based on the assumption that the model can account for
relative positions, since PEpos+k can be represented as a linear function of PEpos for any
fixed displacement k. In addition, the sine function allows the model to work with larger
sequences than those found during training.

2.8 Evaluation of Classification Performance

An important step after training a classification model is to evaluate its performance
using a set of unknown images to the model, also referred as testing set. Usually such
evaluation is performed by measuring the amount of correct predictions in relation to
total number of images and its constituting labels. However, there are effective quality
assessment metrics for evaluating model performance. I will discuss some of them that
have been used in this work.

2.8.1 Confusion Matrix

Confusion matrices are used to evaluate a model’s performance on categorical data. Each
row of the confusion matrix refers to the predicted label and each column of the matrix
represents the actual label. As in Table 2.3, the cells indicate (by numbers or a color
legend) the number of occurrences the model generated for each of the labels and provide
information about True Negatives (TN), False Negatives (FN), False Positives (FP), and
True Positives (TP). For multi-class problems, compute the values for each class: Let i

and j be the rows and columns of the matrix, respectively. Each element Eij of the matrix
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would be the number of items with true class i classified as belonging to label j, as shown
in Table 2.3, with labels A, B and C.

Table 2.3: Confusion Matrix for binary and multi-class classification tasks, respectively.

Actual
positive negative

Pr
ed

ic
te

d positive TP FP

negative FN TN

Actual
A B C

Pr
ed

ic
te

d A TPA EBA ECA

B EAB TPB ECB

C EAE EBC TPC

2.8.2 Precision

Precision evaluates the number of true positives compared to the sum of all positives,
with false positives receiving more attention:

precision = TP

TP + FP
. (2.6)

2.8.3 Recall

Recall is a metric that evaluates whether the model successfully detects true positives
amongst all real positive labels:

recall = TP

TP + FN
(2.7)

2.8.4 F1 score

The F1 score is defined by the harmonic mean between Precision and Recall and therefore
combines both metrics. A low F1 score reflects low Precision or Recall:

f1 score = 2 precision · recall
precision + recall (2.8)

For multi-class classification problems, precision, recall and F1 score can be calculated
by the following types of averaging performed on the data:

• micro: Metrics are calculated globally by counting the sum of true positives, false
negatives, and false positives;

• macro: The metrics are calculated for each label and their unweighted average is
obtained. This type of average does not take into account the imbalance of the
labels;
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• weighted: The metrics are calculated for each label and their weighted average is
determined by the support (the number of true instances for each label). This
changes the ’macro’ to account for label imbalance and may result in an F-score
that is not between accuracy and recovery.

2.9 Final considerations

This chapter discussed the fundamentals that are required to study and tackle image
classification tasks using computer vision techniques for OMR. First, the basic concepts
of music notation and strokes were presented once that is the topic covered by this fi-
nal paper. After that, possibilities for representing music symbol in digital images and
shape-based feature extraction techniques were discussed as a traditional approach for
the underlying recognition task. Finally, the deep learning was also presented, with focus
on CNNs networks and transformer that have largely been employed in the recent days
for object recognition in images.

The techniques and models explored in this chapter showed the wide range of possi-
bilities for the recognition of music symbols in digital images when considering the online
and offline approaches. As deep learning is constantly receiving novel contributions, this
research explores an opportunity of studying transformer for OMR. It is also important
to review previous research to understand the progress of OMR studies and identify gaps.
Therefore, studies were selected to support this work and are discussed in the following
chapter.
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Chapter 3

Literature review

A literature review as defined by Siddaway et al. [49], was conducted to discuss a se-
lection of the most relevant and recent studies on the recognition of symbols in OMR
and application of transformers in computer vision presented after the year 2010. The
following keywords were initially considered for the article search: “omr", “optical music
recognition", “freeman chain code", “online music recognition", “offline music recognition",
“transformer" and “self-attention", as well as references to previously selected articles.
Capes Journal Portal 1 and Google Scholar 2 tools were used to search for articles, and
the papers were selected after three filters in sequence, considering the abstract, the intro-
duction along with the results, and the similarity of the proposed method to the method
presented in this work. This chapter presents the main selected articles that have helped
in the study of this work.

3.1 Recognition of Pen-Based Music Notation: the-
HOMUS dataset

This work is one of the pioneers regarding the task of OMR, especially online OMR . Since
OMR had been little explored until then and the absence of datasets for comparative ex-
periments, Calvo-Zaragoza and Oncina [24] created an online dataset for music symbols
to create a reference corpus. The dataset was created by 100 musicians and contains 32
music symbols distributed in 15200 text files. These files contain one or more lines, each
with a single stroke, where each stroke represents a series of 2D points (coordinates of the
path traced with a digital pen). The paper also presents some classification techniques
for online and offline (images) modes. The considered online techniques include a neural

1https://www-periodicos-capes-gov-br.ezl.periodicos.capes.gov.br/index.php?
2https://scholar.google.com/
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network, in which two versions of feature vectors have been defined for calculating dis-
tances: FFC [40] and DTW [50], and the HMM statistical model, in which a continuous
left-to-right topology was used and the models were trained with the Baum-Welch algo-
rithm [51]. Feature extraction was performed as described by Lee in [23] and included the
following features: Ink directions (from the pen), spatial relationships between subregions
of the symbol divided into a grid, and stroke information defined between pen-down and
pen-up sessions. These resources provided good results for online recognition of musical
symbols. Offline techniques include k-Nearest Neighbor, where the dissimilarity between
two samples was given by the Euclidean distance, ANN [52] with the MLP topology, and
Support Vector Machines [53] considering the Radial Basis Function (RBF) and Polyno-
mial kernel function and trained by Sequential Minimum Optimization Algorithm (SMO)
[54].

Two types of experiments were conducted: one to evaluate the difficulty when recog-
nizing symbols from an unknown user, in which tests consisted of samples of each musician
isolated from the entire data set. The second setting evaluated how classification results
are affected when samples of the same musician are found in the training set. The first
experiment setting yielded to error rates of more than 15%. For online symbol recog-
nition, DTW had the lowest error rate (15.2%), while SVM with RBF kernel achieved
the best performance (26%) among the offline techniques. The second form was able
to achieve better error rates and outperformed FFC with an average error of 7%. In
both experiment forms, the algorithms that used the online nature of the data had the
best performance, while those that explored the offline modality had higher error rates.
Therefore, the authors especially encourage the study of OMR in offline mode.

3.2 Pen-Based Music Document Transcription with
Convolutional Neural Networks

With data sets for field research, it is possible to propose models for the online system to be
used in a future music writing application, as well as for the offline system that recognizes
scores that have already been written. Sober-Mira et al. [7] had the idea of using online
optical recognition to recognize the musical notation of old handwritten scores, using
human interaction to transcribe the musical document. This involves writing the notes
with a digital pen over a score displayed on the screen, i.e., copying the handwritten
symbols. However, the proposed model can also be used in a scenario where the musician
wants to write new compositions. The system receives a multimodal signal: a sequence
of coordinates of the path traveled by the pen on the digital surface, and the image of the
score below the drawn symbol containing the original drawn symbol. Then, the image
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(a) (b) (c)

(d)

Figure 3.1: Process of image acquisition and CNN architecture used: (a) tracking process.
(b) Offline data. (c) Online data. (d) CNN architecture used for both offline and online
data [7].

of the drawn symbol is generated in two ways: by rendering the segments between the
pairs of consecutive points and by cropping the original image of the score considering
the bounding box of the pen strokes. For the classification task, the authors used a CNN
with the following configuration:

Conv(32, 3) → Conv(32, 3) → MaxPool(2) → Conv(32, 3) → Conv(32, 3) →
MaxPool(2)

in which MaxPool is the max pooling operation and Conv(c, k) represents a spatial
convolutional layer with kernel size k × k and number of filters c, with Rectified Linear
Unit (ReLU) [55] activation. Figure 3.1 illustrates the process for a single symbol and
CNN architecture.

Experiments were performed in a dataset consisting of 60 pages of handwritten doc-
uments in white Spanish mensural notation (ca. 16th and 17th centuries), containing
10150 symbols from 30 different classes, using a 5-fold cross-validation scheme. The best
results were obtained by combining the two input forms:

• Intermediate fusion: the two images were fed into the input layer of two CNN s and
ended up in a single output layer - error = 3.6 ± 0.5;

• Late fusion: where the decisions of each CNN were interpreted in terms of proba-
bilities and combined into a single decision - error = 3.5 ± 0.7.
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3.3 Offline music symbol recognition using Daisy fea-
ture and quantum Gray wolf optimization based
feature selection

Malakar et al. [8] also followed the pen-based strategy for classifying symbols in offline
mode. The authors used the descriptor Daisy [56] to extract the features of music symbol
images from different databases. Since the extracted feature vector present high dimen-
sion, they applied a FS strategy called QGWO [57]. The methodology is shown in Figure
3.2. The following datasets were used to validate the proposed method: HOMUS (offline
version only), Capitan score database (Capitan_score_uniform and Capitan_score_non-
uniform) and Fornés dataset.

Figure 3.2: Block diagram of the proposed model [8].

Five common classifiers were tested on a portion of the HOMUS dataset to select the
best performing model and use it for the rest of the experiment: MLP, KNN, Naïve Bayes
(NB), Random Forest (RF), and SMO. SMO achieved the best result and was selected
as the classifier. In addition, the authors conducted experiments with and without the
use of FS, and it became clear that the use of this technique could improve the symbol
recognition accuracy of all datasets. The experimental results showed that on average
a recognition accuracy of almost 99% was achieved, except in the HOMUS dataset with
an average accuracy of 92.64%. The authors also compared their method with some
traditional techniques in the research field and the results showed that the proposed
method performed better than its predecessors.

3.4 An ensemble of deep transfer learning models for
handwritten music symbol recognition

Paul et al. [1] applied three pre-trained deep learning models to different offline datasets of
images with music symbols, using SVM as an aggregator. Figure 3.3 illustrates the general
process used in their work. First, images of music symbols were collected from five pub-
licly available standard datasets, namely Handwritten Online Music Symbols (HOMUS ),
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Capitan_Score_Uniform, Capitan_Score_Nonuniform, Rebelo_real, and Forne’s. Then,
three pre-trained models, ResNet50, GoogleNet, and DenseNet161, were fitted to the HO-
MUS set and the hyperparameters found were applied to the experiments in the remaining
data. The confidence score output vectors of each model were linked and used to train
the SVM classifier to predict the final class. Thus, the length of the input vector for the
SVM classifier is three times the number of classes considered for classification.

Figure 3.3: A graphical description of the Ashis Paul et al. proposed model [1].

The SVM classifier was trained using a weighted sampling method that assigns a
constant weight to samples with multiple unique predictions. Up to now, the authors
obtained the best results for all these datasets with an average accuracy of 97.42% for the
HOMUS set and over 99% for the other datasets.

3.5 BEiT : BERT Pre-Training of Image Transform-
ers

With the success of the large visual Imagenet dataset, The ImageNet dataset, a very
large collection of photographs with human annotations designed by academics, and the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC), an annual competition
using subsets of the ImageNet dataset, have enabled the development and benchmarking of
state-of-the-art computer vision algorithms. In particular, convolutional neural networks
have indeed managed to achieve satisfactory results on image comprehension tasks, such
as the work described above. However, following the success of attention-based models in
natural language processing, many researchers have proposed architectures that insert the
idea of the transformer into convolutional networks for visual tasks and achieve promising
performance in computer vision [30, 31]. However, to achieve good performance, large
datasets are required, even more data than CNN s would demand. Self-supervised pre-
training is a promising solution to overcome this problem. Therefore, Bao et al. [9]
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presented the model Bidirectional Encoder representation of Image Transformers (BEiT)
based on the model BERT.

As shown in Figure 3.4, an input image is divided into a grid of fields (analogous to
words in text input data). The original image is also tokenized with latent Variational
Autoencoder (VAE) codes [58]. In the pre-training phase, before the transformer is turned
on, some areas are randomly masked (gray areas in Figure 3.4). The model then learns
to retrieve the visual tokens from the original image through self-supervised learning.
Once the pre-training is complete, the image is reconstructed using the predicted tokens
and can be applied to downstream tasks by adjusting parameters such as classification,
segmentation, or intermediate tuning.

Figure 3.4: Overview of BEiT pre-training [9].

In the image classification task, a simple linear classifier is added to the transformer.
The authors employed a pooling layer to aggregate the representations and pass them
to a softmax classifier. The pooling layer is used to reduce the input dimension and,
consequently, reduce the number of parameters to be learned and the computational
cost. The layer includes grouping and a filter applied to the feature maps. The most
common grouping methods are average and maximum pooling, in which the average and
maximum values are calculated for each field in the resource map, respectively. The result
is a summary of the input features that is invariant to small changes in the position of the
input features (invariant to local translation). The BEiT classifier uses average pooling.
The probabilities of the categories are calculated by Equation 3.1.

softmax(avg(hL
i

N

i=1Wc)), (3.1)
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in which hL
i is the final encoding vector of the i-th image patch, Wc ∈ RD×C is an array of

parameters, and C is the number of labels. The probability of labeled data is maximized
by updating the BEiT parameters and the softmax classifier.

BEiT achieved an accuracy of 91.8 in the CIFAR-100 dataset and 83.2 in the ImageNet
dataset. Thus, BEiT is an efficient transformer model for images, as well as other models,
with “Vision Transformer” (ViT) porposed by Dosovitskiy et al. [30] and “Data-Efficient
Image Transformers” (DEiT) porposed by Touvron et al. [31].

ViT is the first model to successfully train a transformer encoder on images, in par-
ticular ImageNet, with very good results compared to known convolutional architectures.
The model follows a simplified pipeline compared to BEiT, without the use of tokens:

1. splitting an image into patches;

2. flatten the patches;

3. creating low-dimensional linear embeddings;

4. adding position encoding vectors to embeddings;

5. feed the sequence as input to a standard transformer encoder;

6. pre-train the model in a supervised manner;

7. fine-tune the downstream dataset for image classification.

ViT models must be trained on expensive infrastructure to achieve good accuracies. To
solve this problem, Touvron et al. has proposed DEiT [31], which requires much less data
and much less computational resources compared to ViT . DEiT contains a distillation
token that is learned by backpropagation from the pre-trained convolutional RegNety [59]
and interacts with data labels and image patch tokens through self-attention layers.

3.6 Final considerations

The literature review showed some researches that provides various online and offline no-
tation datasets. Moreover, some promising studies in OMR employed different computer
vision techniques, and most importantly, presented successful applications using trans-
formers. Hence, this scenario is appropriate to explore and study an approach to OMR
based on transformer. Since the datasets are not large, the method presented in this
work has as one of the objects of study the transformer through three pre-trained models:
BEiT, ViT and DEiT, which do not require a large database to obtain satisfactory results.

The details of the method are described in the next chapter.
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Chapter 4

Methodology

This work proposes a method for recognizing music notation, more specifically for clas-
sifying music symbols from online images (drawings with a pen on a digital surface) and
offline images, using a transformer-based classification model. Each step of the proposed
method is detailed in the next sections. Section 4.1 describes the image acquisition. Sec-
tion 4.2 describes the preprocessing of images. Section 4.3 explains the transformation
and classification of images. Finally, Section 4.4 describes the evaluation strategy of the
proposed method.

The data set passes through a pipeline defined by a sequence of transformations, as
shown in the flowchart in Figure 4.1.

Figure 4.1: Flowchart describing the proposed method.

4.1 Step A: Obtaining the images of online data

In a real situation, the musician draws his composition on a digital surface (tablet) over
time. A system can capture the coordinates of the pen’s contact with the surface at
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a certain frequency, and in this way group the coordinates into tracks, which in turn
are grouped into different musical symbols, depending on the capture rate. Thus, the
proposed method receives as input a sequence of sequences of coordinate pairs, in which
a novel image is created regarding the corresponding symbol.

Converting online data to offline data consists of creating an image of the input symbol
by drawing a line between each coordinate pair in turn on a “blank screen”. This is done
for all pairs of coordinates so that the final symbol is drawn. The final image is defined
by the bounding box around the symbol, according to the maximum and minimum points
of each dimension of the coordinates (xmax, xmin, ymax and ymin), as show in Figure 4.2.

Figure 4.2: Creating the symbol image without pad.

4.2 Step B: Image Preprocessing

This phase involves the transformation of images, both those generated from online data
in step A and those from offline datasets that already have this format. As discussed
in Section 2.3, it is desirable that the model presents invariance to rotation, translation
and scaling. As explained earlier, in musical notation the symbols are written on top
of the staff, and without this the symbols have no meaning. Therefore, writing follows
well-defined rules, i.e., there is no possibility of having images of rotated symbols, and
thus the proposed method does not need to be present invariance to rotation.

Each transformer model, as mentioned earlier, has been pre-trained on images with
specific sizes. Thus, the images must be resized to that size in order to serve as input
to these models. However, when the images are resized, the symbols lose their structure,
such as the height and width properties. Since the recognition task is sensitive to the
shape of the symbol in the image, a fill is added to the image so that it becomes square,
and then the size is changed. Thus the proportions of the objects are preserved. The
resize process is performed by interpolation [60], which is a function for finding new data
points based on the range of a discrete set of known data points. The resize value is
defined according to the size of the images used in the pre-training of the transformers
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models. In this work, the nearest neighbor interpolation algorithm [61] was used, which
selects the value of the nearest point and disregards the values of neighboring points. This
approach was chosen because it is best suited for image classification tasks, since the pixel
values that are used as input to the function remain exactly the same.

Another common and important step to consider in image classification tasks is to
define the image as a tensor, i.e., an n-dimensional matrix that can be run on the GPU,
and normalize it, since this guarantees that each pixel has a distribution of similar data.
This speeds up convergence when training the classifier. An image is normalized to mean
and standard deviation [62] as in Equation 4.1.

normalized[channel] = (input[channel] − mean[channel])/std[channel] (4.1)

4.3 Step C: Image Classification

Three pre-trained transformer models were selected from a large external database: ViT
[30], BEiT [9] and DEiT [31]. The transformer architecture contains as its final layer a
simple linear classifier configured according to the number of labels (symbol types) of the
input data to categorize images, i.e., to identify the music symbol corresponding to the
image. As there are no large music notation datasets in the online approach, the method
of this work considers transfer learning by taking into account the reasons described in
Section 2.6.

4.4 Step D: Evaluation of the classification perfor-
mance

To verify that the model can correctly classify the unknown images, the accuracy, recog-
nition, and F1 score are analyzed 2.8. Furthermore, to get an overview of the recognition
of the symbols, the confusion matrix and the graphics depicting the accuracy values of
each class are analyzed. To test the proposed method, experiments were performed on
different image sets with music notation and will be evaluated in the next chapter.

4.5 Final considerations

This chapter discussed the steps that constitute the proposed method. These include
the generation of images from online data, preprocessing and classification of the images.
Finally, the next step is concerned to the evaluation of the proposed method in order to
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evaluate the classification performances on different image sets of handwritten musical
notes were employed. The experiments and the discussion of the results are presented in
the next chapter.
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Chapter 5

Experimental results

This chapter describes the experiments to validate the proposed method, which were
conducted using different data sets. The source code for this work is available in a
repository on GitHub 1.

5.1 Data sets

The experiments considered six data sets. Two sets of online data: HOMUS [24] 2 and SNU
[25] 3, and four data sets: Capitan_Score_Uniform and Capitan_Score_Non-uniform [63]
4, Fornés [13] 5 and Rebelo_real [64] 6, which are discussed in more detail below.

Figure 5.1: Symbols examples of HOMUS (Sharp), SNU (Eighth-Rest), Capi-
tan_Score_Uniform (flat), Capitan_Score_Non-uniform (g-clef ), Fornés (CLEF_Bass)
and Rebelo_real (notesFlags) datasets, respectively.

5.1.1 Handwritten Online Music Symbols dataset

HOMUS has 15200 samples with 32 different symbols and was created by 100 musicians
with much, little or no experience in musical composition from the Escuela de Educandos
Asociación Musical l’Avanç music schools (El Campello, Spain) and the Superior Music

1https://github.com/hevslc/OMR-with-Transformers
2https://grfia.dlsi.ua.es/homus/
3http://mipal.snu.ac.kr/index.php/SNU_Dataset_for_Online_Music_Symbol_Recognition
4http://grfia.dlsi.ua.es/musicdocs/Capitan.zip
5http://www.cvc.uab.es/~afornes/
6https://github.com/apacha/OMR-Datasets
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Conservatory of Murcia "Manuel Massotti Littell" (Murcia, Spain). The symbols were
written according to the writing style of each musician, with the eighth notes, sixteenth
notes, thirty-second notes, and sixty-fourth notes written twice: straight and inverted.
Writing was performed on a Samsung Galaxy Note 10.1 device with a resolution of 1280×
800 (149 ppi), a sampling rate of 16 ms (60 fps), and using the S Pen stylus. The Table
5.1 shows the symbols included in this dataset. Figure 5.2 presents the distribution of
labels.

Table 5.1: Symbols from the HOMUS dataset.

Note whole, half, quarter, eithght, sixteenth, thirty-second, sixty-fourth
Rest whole/half, quarter, eithght, sixteenth, thirty-second, sixty-fourth
Accidentals flat, sharp, natural, double sharp
Time signatures common time, cut time, 4-4, 2-2, 2-4, 3-4, 3-8, 6,8, 9-8, 12-8
Clef G-clef, C-clef, F-clef
Others dot, barline

The symbols are organized in text files distributed in independent directories for each
musician. Each text file contains:

• Example label;

• One or more lines representing a dash;

• Each dash contains a list of 2D points, where dashes are separated by a semicolon
and the dimensions of a point are separated by a comma.

Figure 5.2: Distribution of labels in the HOMUS dataset.
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5.1.2 Seoul National University Dataset for Online Music Sym-
bol Recognition

The SNU dataset, created by Oh et al. [25], similarly to the HOMUS dataset (and
considered by the authors to be a subset of it), contains 1716 samples with 16 different
symbols written by 18 musicians. The images were collected using a digital device and a
stylus pen. Table 5.2 shows the types of symbols the set contains, and the organization of
the data is the same as in the HOMUS set. Figure 5.3 presents the distribution of labels.

Table 5.2: Símbolos do conjunto de dados SNU .

Note whole, half, quarter, eighth, sixteenth
Rest whole/half, quarter, eighth, sixteenth
Accidentals flat, sharp, natural
Time signatures common time, cut time, 4-4, 2-2, 2-4, 3-4, 3-8, 6,8, 9-8, 12-8
Clef G-clef, F-clef
Others dot, barline

Figure 5.3: Distribution of labels in the SNU dataset.

5.1.3 Capitan dataset

The construction of this dataset was coordinated by Calvo-Zaragoza et al. [63], where
10230 musical symbols, represented in Table 5.3, were found in old manuscripts from the
16th to 18th centuries [65]. The image set contains information about both the stroke
captured by the pen on a digital surface and the writing field below the stroke itself.
Only online data were used in this work. This set contains two types of samples with
the names proposed by Malakar et al. [8]: “Capitan_Score_Uniform” has a uniform
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boundary outside the music symbol content and “Capitan_Score_Non-uniform” presents
non-uniform boundaries. Figure 5.4 presents the distribution of labels for both types of
samples.

Table 5.3: Symbols of Bimodal music symbols from Early notation dataset.

Note

(coloured) brevis, longa,
(coloured) minima (whole/half in HOMUS ),
(coloured) semibrevis (whole in HOMUS ),
(coloured) semiminima (eighth in HOMUS )
brevis, longa, whole/minima (whole/half in HOMUS ),Rest seminima (eighth in HOMUS )

Accidentals flat, sharp
Time signatures common time, cut time
Clef C-clef, F-clef 1, F-clef 2, G-clef

dot, barline, double barline, custos, fermata, beam,Others proportio minor/maior

Figure 5.4: Distribution of labels in the Capitan dataset.

5.1.4 Fornés dataset

The construction of this image set was coordinated by Fornés et al. [13], where 2128
clefs and 1970 accidentals, represented in the Table 5.4, were found in modern and old
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manuscripts from the from the 19th century. The The symbols have been written by 24
different Portuguese musicians. Figure 5.5 presents the distribution of labels for both
types of samples.

Table 5.4: Symbols of Fornés dataset.

ACCIDENTAL_Sharp
CLEF_Alto
CLEF_Bass
CLEF_Trebble

Figure 5.5: Distribution of labels in the Fornés dataset.

5.1.5 Rebelo_real dataset

This image set was provided by Rebelo et al. [64] and contains about 3500 of 14 different
handwritten musical symbols 5.5 from early music scores, probably written by 5 differ-
ent Portuguese musicians between the 17th and 19th centuries. Figure 5.6 presents the
distribution of labels for both types of samples.

Table 5.5: Symbols of Rebelo_real dataset.

accent bassClef
beams flat
naturals notes
notesFlags notesOpen
rests1 rests2
staccatissimo trebleClef
sharps unknown
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Figure 5.6: Distribution of labels in the Rebelo_real dataset.

5.2 Experimental setup

To perform the experiments, the development environment and data sets were configured
as follows:

• The experiments were performed in a Linux environment and with an Intel(R)
Xeon(R) Gold 5220R CPU @ 2.20GHz.

• The method was coded in Python 3.8 using the following main libraries for support:

image preprocessing: torchvision 7,

transformer: huggingface to obtain the transformer model, training model and
hyperparameter optimization model 8;

• The BEiT model was pre-trained in a self-supervised manner on the large ImageNet
22k image collection (14 million images, 21,841 labels) in 224 × 224 resolution and
fitted in a supervised manner on the ImageNet subset ILSVRC2012 [66] (1 million
images, 1000 labels), also presenting 224 × 224 resolution.

• The ViT model was pre-trained on ImageNet-21k (14 million images, 21,843 labels)
at resolution 224 × 224, and fine-tuned on ImageNet 2012 (1 million images, 1,000
labels) at resolution 224 × 224.

• The DEiT model was pre-trained and fine-tuned on ImageNet-1k (1 million images,
1,000 labels) at resolution 224 × 224.

7https://pytorch.org/vision/stable/transforms.html
8https://huggingface.co/
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• All data sets used in this paper were divided according to the holdout method and
the Pareto principle (also known as the 80/20 rule), with 80% for the training set
and 10% for the validation and test sets. The split returns stratified data, i.e, each
set contains approximately the same percentage of samples of each target class as
the complete set.

Setting up architectures for machine learning models requires careful tuning. For com-
plex architectures, manual configurations or brute force methods are not feasible, as such
processes can be extremely time consuming. Fortunately, automatic hyperparameter opti-
mization methods exist today, such as Async Successive Halving Algorithm (ASHA) [67],
Population Based Training (PBT) [68], Bayesian Optimization and Hyperband (BOHB)
[21] and and BlendSearch [69], some of which are specifically designed for parallel com-
puting.

Therefore, in this work, the hyperparameters of the models were optimized by parallel
computations using Tree-Structured Parzen Estimator (TPE) [70]. TPE worked with the
ASHA [67] scheduler based on the original HyperBand [71] scheduler, which can terminate
bad tests early, pause tests, clone tests, and change hyperparameters of a running test.
Thirty tests runs were defined, each running on 1 CPU and 1 GPU. Optimization took
place via the BEiT transformer in a subset of HOMUS (half of the data set). The hyper-
parameter values found are presented in Table 5.6 and were replicated for all transformer
models and all data sets.

Table 5.6: Hyperparameter values obtained after the optimization process on the valida-
tion set.

learning rate train batch size eval batch size train epochs
2.428e − 05 4 4 3

5.3 Quantitative assessment

Table 5.7 describes the performances in terms of accuracy, recall and F1 score 2.8. The
weighted average of the scores of each class for these metrics was considered. Results of
over 98% were obtained. It can be concluded that the proposed method performs well in
all metrics and datasets. DEiT showed the best performance in most cases, which could
be due to the fact that it requires much less data and much less computational resources
to build a powerful image classification model.

In Table 5.9, the original results of this work were compared with those obtained
by recent and best-performing works in literature, such as the researches by Oh et al.

39



Table 5.7: Summary of the results of the recognition of musical symbols of the datasets
with different transformer models.

Dataset Classifier Precision Recall F1 score
(transformer) (in %) (in %) (in %)

HOMUS
BEiT 98.66 98.66 98.66
ViT 98.95 98.95 98.95

DEiT 99.13 99.12 99.12

SNU
BEiT 99.67 99.65 99.65
ViT 99.54 99.53 99.53

DEiT 100.00 100.00 100.00

Capitan_Score_Non-uniform
BEiT 99.75 99.75 99.75
ViT 99.73 99.73 99.73

DEiT 99.86 99.86 99.86

Capitan_Score_Uniform
BEiT 99.75 99.75 99.75
ViT 99.71 99.71 99.71

DEiT 99.86 99.86 99.86

Fornés
BEiT 100.00 100.00 100.00
ViT 99.95 99.95 99.95

DEiT 98.95 99.95 99.95

Rebelo_real
BEiT 98.79 98.76 98.76
ViT 98.89 98.88 98.87

DEiT 99.30 99.29 99.29

[25] on the SNU dataset, and by Paul et al. [1] on the other datasets. Regardless of
differences in methodology, as show in Table 5.8, the method used in this work, manages
to achieve state-of-the-art results for all datasets evaluated, except for the Rebelo_real
and the Fornés sets, in which there is a small difference of points for the latter.

Table 5.8: Training configuration of each method compared.

Method Training

OMR with Transformer 80-10-10
batch=4

Ensemble [1] 5-fold cross-validation
validation: 15% of the train samples

Oh’s et al. [25] 10-fold crossvalidation
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Table 5.9: Comparison with methods of the most recent works.

Dataset Method F1 score (in %)

HOMUS Ensemble [1] 97.48
OMR with Transformer (DEiT) 99.12

SNU Oh’s et al. [25] 93.65
OMR with Transformer (DEiT) 100.00

Capitan_Score_Non-uniform Ensemble [1] 99.64
OMR with Transformer (DEiT) 99.86

Capitan_Score_Uniform Ensemble [1] 98.90
OMR with Transformer (DEiT) 99.86

Fornés Ensemble [1] 100.00
OMR with Transformer (DEiT) 98.95

Rebelo_real Ensemble [1] 99.56
OMR with Transformer (DEiT) 99.29

5.4 Visual assessment

From the diagram in Figure 5.7, it can be seen that the lowest scores are related to the
Eighth-Rest, Sixteenth-Rest and Natural symbols. This is due to the fact that they are
similar symbols and can be misclassified among them, as shown by the confusion matrix
in Figure 5.8. The example of these symbols, depicted in Figure 5.9, shows the similarity
between Thirty-Two-Note and Sixty-Four-Note or between Thirty-Two-Rest and Sixty-
Four-Rest.

Figure 5.7: F1 score for HOMUS symbols in each transformer model.
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Figure 5.8: Confusion matrix for HOMUS symbols in each transformer model.

Figure 5.9: Symbols from the HOMUS dataset: Thirty-Two-Note, Sixty-Four-Note,
Thirty-Two-Rest and Sixty-Four-Rest, respectively.

Figure 5.10 illustrates that the lowest scores are related to the labels Eighth-Rest,
Sixteenth-Rest and Natural. As in the HOMUS set, the similarity of the symbols, as
shown in Figure 5.12, can lead to misclassification. In Figure 5.12, both symbols consist
of a vertical bar and one or two horizontal bars to the left of it.

Figure 5.10: F1 score for SNU symbols in each transformer model.
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Figure 5.11: Confusion matrix for SNU symbols in each transformer model.

Figure 5.12: Symbols from the SNU dataset: Eighth-Rest, Sixteenth-Rest, and Natural,
respectively.

For the other data sets, it is not possible to conclude from the confusion matrices,
in Figures 5.11, 5.14, 5.15, 5.16 and 5.17, that the lower scores are due to the similarity
of some symbols. Therefore, it is possible that the symbols with the lowest scores have
an extremely minimalist design with simple slashes or circles that can be confused with
other symbols, as show in Figure 5.13.

Figure 5.13: Barline on the left and Cut time on the right from Capitan_Score_Non-
uniform set.
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Figure 5.14: Confusion matrix for Capitan_Score_Non-uniform set in each transformer
model.

Figure 5.15: Confusion matrix for Capitan_Score_Uniform symbols set in each trans-
former model.

Figure 5.16: Confusion matrix for Fornés set in each transformer model.
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Figure 5.17: Confusion matrix for Rebelo_real set in each transformer model.

The Figures 5.19, 5.18, 5.20 and 5.21 present the scores of each symbol class for the
data sets, respectively. Note that DEiT continues to perform best for most symbols. This
could be due to the fact that DEiT uses a distillation token. Distillation is the process
by which one neural network (the student) learns from the output of another network
(the teacher). In DEiT, the distillation token is a learned vector that flows through the
network along with the transformed image data.

Figure 5.18: F1 score for Capitan_Score_Uniform symbols set in each transformer model.

Figure 5.19: F1 score for Capitan_Score_Non-uniform symbols set in each transformer
model.

The factors contributing to the higher initial scores on the image labels can be properly
analyzed according to the attention visualization technique proposed by Chefer et al. [72].
In this technique, the attention matrices of a layer are multiplied by the gradient of the
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Figure 5.20: F1 score for Fornés set in each transformer model.

Figure 5.21: F1 score for Rebelo_real set in each transformer model.

target class. Since each transformation layer has multiple heads and each head focuses at
different image regions, the information from the heads was combined by computing the
average between them. As a result, the output image enhances only the main attentions
that contribute to a higher final precision. Figure 5.22 shows the contributions of the
attentions of the last layer of the DEiT transformer for the Sixty-Four-Note and Quarter-
Note labels of the HOMUS set after training. It is shown that the structure of the
attention regions actually corresponds to the structure of the symbol in question, i.e., the
model pays attention to the regions that follow the format of the class symbol.

Figure 5.22: Contributions of the attentions of the last layer of DEiT transformer for
the Sixty-Four-Note class to the left and Quarter-Note class on the right, after training.
Brighter regions mean greater attention.
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5.5 Final considerations

This chapter presented the implementation of the experiments with the sets HOMUS,
SNU, Capitan_Uniform, Capitan_Non-uniform, Fórnes, and Rebelo using the three pre-
trained transformer models BEiT, ViT, and DEiT. The content of each set, the quantita-
tive results, including classifier estimates and comparison with recent research techniques,
and the visual results, including graphs showing the accuracy of each label and the result-
ing confusion matrix for each classifier, were presented. In addition, some visual results
of the attention maps of the DEiT model were presented.

The pre-trained transformers were able to classify the symbols satisfactorily, with ac-
curacy values above 98%, even for data sets classified as small. The lower values may be
due to either the similarity of the symbols or the diversity of the writing style. Never-
theless, most accuracy scores exceeded the state of the art, which includes CNNs such as
Paul’s approach et al. [1]. The proposed method was promising and offers opportunities
for improvement. Some suggestions for future work are recommended in the following
chapter.
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Chapter 6

Conclusion

A method for recognition of online and offline handwritten musical symbols was proposed
using a transformer model with transfer learning as a feature extractor and classifier. The
method was evaluated on six data sets: HOMUS and SNU (online), Capitan_Score_Non-
uniform, Capitan_Score_Uniform, Fornés and Rebelo_real (offline), using three pre-
trained transformers, BEiT, ViT, and DEiT.

First, the images were preprocessed by padding them to avoid losing the original struc-
ture of the symbol, resizing them, transforming them into tensors, and normalizing them.
To obtain the best configuration of the trainings, the hyperparameters were optimized by
parallel computations with the TPE and with the ASHA scheduler.

The models showed a satisfactory classification performance, outperforming state-
of-the-art methods for most datasets. In particular, for the HOMUS dataset, which
has higher complexity due to the high structural similarity of the symbols compared to
the other datasets, the transformers achieved a significant improvement in classifications
compared to other work. For example, DEiT achieved 99.12% of the F1 score, exceeding
the 97.48% score of the ensemble method compared in this work. In general, the proposed
method provided results above 98%, with the model using the DEiT architecture showing
the best performance in most cases. Therefore, it is concluded that transformers have a
great contribution in the OMR field.

The proposed method can be combined with other approaches that include other
subsets of OMR, such as online acquisition of music symbols, segmentation of symbols
in images of handwritten scores, and reconstruction of MIDI files to create a complete
OMR system. Therefore, the method proposed here is promising as it makes a strong
contribution to OMR and offers opportunities for improvement.
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6.1 Future work

The promising results in this research provides some possibilities for further steps on the
OMR research field. The internal parameters of the transformers have not been optimized,
so this task will be extended to a future work. In addition, the execution times can also
be studied and improved, especially in terms of generating images of the online data. A
more detailed study of the visualizations of the attentions in relation to the precisions
can be done as well. An investigation of the proposed method can also be performed by
merging the databases whose characteristics of the images, such as background color and
symbol color, are similar, and performing an intersection of the symbol types present in
each set.

In addition, using the contribution of the ensemble method of Paul et al. [1], a
combination of two or more transformers can be studied as a method to improve the in
this work. Or the last classification layer of the transformer architecture can be improved
to increase the classification accuracy.
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