

Universidade de Brasília Instituto de Química Curso de Engenharia Química

PROJETO DE ENGENHARIA QUÍMICA

Otimização de Torre de Destilação para produção de Etilbenzeno

Francisco Wytorhugo Teixeira de Aguiar

Sofia Lima Ribeiro

Thayná Sousa Pereira

Wellington Paula da Silva Junior

Brasília, 13 de fevereiro de 2023.

AGRADECIMENTOS

É com grande satisfação que apresentamos este trabalho de conclusão de curso, fruto de muito esforço e dedicação.

Gostaríamos de agradecer primeiramente aos nossos pais, que sempre acreditaram e deram suporte incondicional durante toda a nossa jornada acadêmica. Obrigado por todo amor e carinho.

Agradecemos também ao nosso orientador Prof. Dr. Jose Joaquin Linares Leon, que com seu conhecimento e paciência nos guiou e orientou durante todo o processo de elaboração deste trabalho. Sua dedicação e disponibilidade foram fundamentais para a conclusão deste projeto.

Não poderíamos deixar de mencionar os familiares e amigos, que sempre estiveram presentes, compreendendo as dificuldades e comemorando as conquistas. Aos colegas de curso, que compartilharam conhecimentos e experiências valiosas, tornando a nossa jornada ainda mais enriquecedora. Além disso, agradecemos à Universidade de Brasília (UnB) e a todos os profissionais que de alguma forma contribuíram para nossa graduação.

Por fim, agradecemos a Deus, por ter nos dado saúde, sabedoria e forças para concretizar mais esse sonho. Obrigado por todas as bênçãos e oportunidades que a vida tem nos proporcionado.

RESUMO

O presente trabalho apresenta o projeto e otimização de uma refinaria para produção de etilbenzeno, um importante insumo para fabricação de estireno e poliestireno, a partir da reação entre o benzeno e o etileno. O enfoque está na projeção da torre de destilação fracionada para obtenção de etilbenzeno com grau de recuperação de 99%, instalação de três bombas que permitem o fluxo de matéria, um vaso pulmão e três trocadores de calor com funções de pré-aquecer e vaporizar o alimento da torre, e resfriar o destilado. A instalação descrita possui capacidade produtiva de 80.000 toneladas/ano com conversão de 99,8 mol% e para simular sua operação utilizou-se o *software* Aspen HYSYS® além da estruturação de um diagrama P&ID no qual descrevem-se todos os elementos de instrumentação, controle e segurança necessários, além de um diagrama PFD para melhor visualização das correntes no processo. Todo o dimensionamento da planta foi realizado com base na otimização econômica de cada equipamento, considerando a melhor relação entre número de pratos da torre e taxa de refluxo com uma estimação para 10 anos com taxa de desconto à 15%. Finalmente realizou-se a análise de impacto ambiental da instalação propondo maior eficiência da planta e redução de desperdícios.

Palavras-chave: etilbenzeno, dietilbenzeno, torre de destilação, simulação, otimização.

ABSTRACT

The present work presents the design and optimization of a refinery for the production of ethylbenzene, an important raw material for the manufacture of styrene and polystyrene, from the reaction between benzene and ethylene. The focus is on the projection of the fractional distillation tower for the obtaining of ethylbenzene with a recovery rate of 99%, the installation of three pumps that allow the flow of matter, a reflux vessel, and three heat exchangers with functions to preheat and vaporize the tower's feed, cool the distillate. The described installation has a productive capacity of 80,000 tons/year with a conversion rate of 99.8 mol% and to simulate its operation, the Aspen HYSYS® software was used, along with the creation of a P&ID diagram, which describes all the necessary instrumentation, control, and safety elements, as well as a PFD diagram for better visualization of the currents in the process. The entire plant sizing was based on the economic optimization of each equipment, considering the best relationship between the number of tower plates and reflux rate with an estimate for 10 years with a discount rate of 15%. Finally, the environmental impact analysis of the installation was carried out, proposing greater efficiency of the plant and reduction of waste.

Keywords: ethylbenzene, di-ethylbenzene, distillation tower, simulation, optimization.

Lista de Figuras

Figura 1. Fluxograma do processo de produção do etilbenzeno
Figura 2. Diagrama de processos da torre de destilação T-1
Figura 3. Representação genérica do balanço de massa sobre as principais correntes do
processo
Figura 4. Representação esquemática das principais regiões me uma torre de destilação.
Figura 5. Volume de controle na região de retificação
Figura 6. Volume de controle na região de esgotamento
Figura 7. Estrutura de uma bomba centrífuga
Figura 8. Modelo usado para projeto de bomba P-1
Figura 9. Modelo usado para projeto de bomba P-2
Figura 10. Modelo usado para projeto de bomba P-3
Figura 11. Esquema de um trocador de calor casco e tubo de cabeçote flutuante ^{24.} 39
Figura 12. Esquema do projeto do trocador E-141
Figura 13. Esquema do projeto do trocador E-2
Figura 14. Esquema do projeto do trocador E-3
Figura 15. Esquema do vaso pulmão V-1
Figura 16. Princípios de torres de destilação
Figura 17. Esquema da torre T-1
Figura 18. Torre de destilação T-1
Figura 19. Diagrama mecânico (P&ID) da torre para destilação de EB (T-1)56

Lista de Tabelas

Tabela 1. Cinética da reação de formação do etilbenzeno .	20
Tabela 2. Dados referentes à corrente 1.	28
Tabela 3. Dados referentes à corrente 11.	29
Tabela 4. Dados referentes à corrente 13.	30
Tabela 5. Parâmetros característicos da bomba P-1	36
Tabela 6. Parâmetros característicos da bomba P-2	37
Tabela 7. Parâmetros característicos da bomba P-3	37
Tabela 8. Parâmetros característicos do trocador de calor E-1	41
Tabela 9. Parâmetros característicos do trocador de calor E-2	42
Tabela 10. Parâmetros característicos do trocador de calor E-3	43
Tabela 11. Parâmetros característicos do vaso V-1.	46
Tabela 12. Otimização econômica do vaso V-1.	46
Tabela 13. Otimização econômica para determinação do n° de pratos de Torre T-	151
Tabela 14. Parâmetro característicos da torre de 46 pratos.	52
Tabela 15. Otimização econômica da torre T-1 com 46 pratos	52
Tabela 16. Custos de cada equipamento.	52
Tabela 17. Listagem de indicadores	53
Tabela 18. Listagem de controladores	54
Tabela 19. Listagem de alarmes.	54
Tabela 20. Listagem de intertravamentos	55
Tabela 21. Listagem das válvulas de segurança.	55

Lista de Siglas

ACCR	Annual Capital Charge Ratio (Taxa Anual de Desconto de Capital)
BTEX	Benzeno, Tolueno, Etilbenzeno e Xileno
CETESB	Companhia Ambiental do Estado de São Paulo
COV	Compostos Orgânicos Voláteis
DEB	Dietilbenzeno
EB	Etilbenzeno
EPI	Equipamentos de Proteção Individual
HLL	High Liquid Level (Nível Máximo de Líquido)
IARC	Agência Internacional de Pesquisa em Câncer
LLL	Low Liquid Level (Nível Mínimo de Líquido)
LOI	Linha de Operação Inferior ou de Esgotamento
LOS	Linha de Operação de Retificação
MPS	Vapor de Média Pressão
NLL	Normal Liquid Level (Nivel Normal de Líquido)
NPSH	Net Positive Suction Head (Carga Positova de Sucção)
PFD	Process Flow Diagram (Fluxograma de Processos)
P&ID	<i>Piping and Instrumentation Diagram</i> (Diagrama de Processos e Instrumentação)
SPME	Solid Phase Microextraction (Microextração em Fase Sólida)

Lista de Símbolos

r_i	Velocidade da Reação
$k_{o,i}$	Constante de Velocidade da Reação
E _i	Energia de Ativação da Reação
R	Constante Universal dos Gases
Т	Temperatura
С	Concentração
a'	Ordem da Reação para o Etileno
<i>b'</i>	Ordem da Reação para o Etilbenzeno
<i>c</i> ′	Ordem da Reação para o Tolueno
d'	Ordem da Reação para o Benzeno
<i>e'</i>	Ordem da Reação para o Dietilbenzeno
F	Vazão Mássica de Alimentação
X_f	Fração Mássica da Alimentação
X _d	Fração Mássica do Destilado
X _b	Fração Mássica do Produto de Fundo
V	Corrente de Vapor (estágio n)
\overline{V}	Corrente de Vapor no Estágio (estágio n-1)
L	Corrente de Líquido (estágio n)
Ī	Corrente de Líquido (estágio n-1)
Q_r	Calor Introduzido Pelo Refervedor
D	Vazão Mássica do Destilado
q_D	Calor Contido no Destilado
В	Vazão Mássica do Produto de Fundo
q_B	Calor Contido no Produto de Fundo
Q_C	Calor Retirado Pelo Condensador
V	Vazão Mássica do Vapor de Topo
q_V	Calor Contido no Vapor de Topo
L	Vazão Mássica do Refluxo Externo
q_L	Calor Contido no Refluxo Externo.

W_{bomba}	Potência Consumida Pela Bomba
Ż	Vazão Volumétrica
ΔP	Diferença entre a Pressão de Admissão e a Pressão de Impulsão
η_e	Eficiência Elétrica
η_h	Eficiência Hidráulica
C _{bomba}	Custo Total da Bomba
C _c	Custo da Carcaça
C_m	Custo do Motor
f	Fator de Hand
P_{v}	Pressão de Vapor do Líquido
ρ	Densidade do Líquido
g	Aceleração da Gravidade
h_f	Perdas por Fricção na Linha de Admissão
Н	Altura Geométrica da Admissão
P _{imp}	Pressão na Impulsão
P _{adm}	Pressão na Admissão
Δt_{ml}	Diferença de Temperatura Média Logarítmica
T_1'	Temperatura de Entrada do Fluido Quente
T_2'	Temperatura de Saída do Fluido Quente
$T_{1}^{\prime \prime}$	Temperatura de Entrada do Fluído Frio
$T_{2}^{\prime \prime}$	Temperatura de Saída do Fluído Frio
F _t	Fator de Correção
Q	Calor Transferido por Unidade de Tempo
U	Coeficiente Global de Transferência de Calor
A _{tubo}	Área de Cada Tubo do Trocador
D_t	Diâmetro do Tubo
L _t	Comprimento do Tubo
N _{tubos}	Número de Tubos
C _{cc}	Custos dos Trocadores
а	Parâmetro Tabelado Para Estimativa do Custo do Equipamento

b	Parâmetro Tabelado Para Estimativa do Custo do Equipamento
n	Parâmetro Tabelado Para Estimativa do Custo do Equipamento
S	Área Calculada do Trocador
C_i	Custo de Instalação
f _{Lang}	Fator de Lang
V_L	Volume de Líquido
r	Tempo de Retenção
Q_L	Vazão Volumétrica de Líquido
V_V	Volume do Vaso
D_V	Diâmetro do Vaso
L_V	Comprimento do Vaso
t	Espessura dos Equipamentos
S _s	Eficiência da Solda
Ε	Tensão Máxima de Resistência do Material
W_{v}	Peso do Vaso
C_w	Fator de Peso
C _e	Custo do Vaso
Q_{vap}	Máxima Vazão Volumétrica de Vapor
$ ho_G$	Densidade do Gás
$ ho_L$	Densidade do Líquido Em Contracorrente
v_{lim}	Velocidade Limite
S _{mín}	Seção Transversal Mínima
D_t	Diâmetro da Torre
H _{Último} estágio	Distância até o Último Estágio
H _{torre}	Altura da Torre
P _i	Pressão Relativa Mínima de Projeto
D_n	Diâmetro Nominal
C_{prato}	Custo do Prato
C_T	Custo do Da Torre

ÍNDICE

1. INTRODUÇÃO E OBJETIVOS	
2. REFERENCIAL TEÓRICO	14
2.1 Etilbenzeno	
2.2 Processo produtivo do etilbenzeno	
2.3 Benzeno	
2.4 Etileno	
3. DESCRIÇÃO DO CENÁRIO	
3.1 Balanço de Massa e Energia	
4. PROJETO DA PLANTA	
4.1. Correntes de processo	
4.2. Bombas	
4.2.1. Projeto da bomba P-1	
4.2.2. Projeto da bomba P-2	
4.2.3. Projeto da bomba P-3	
4.3. Trocadores de calor	
4.3.1 Projeto do trocador de calor E-1	
4.3.2 Projeto do trocador de calor E-2	
4.3.3 Projeto do trocador de calor E-3	

4.4. Vasos pulmões	
4.5. Torres de separação	
4.6. Listagem de indicadores	
4.7. Listagem de controladores	
4.8. Listagem de alarmes	
4.9. Listagem de intertravamentos	
4.10. Listagem de válvulas de segurança	
4.11. Diagrama mecânico de processo	
4.12. Avaliação de impacto ambiental	
5. CONCLUSÕES	
6. BIBLIOGRAFIA	
7. ANEXOS	

1. INTRODUÇÃO E OBJETIVOS

O Etilbenzeno (EB) é uma das commodities mais importantes em volume da indústria petroquímica e sua demanda apresenta uma taxa de crescimento crescente nos últimos anos¹. Até o início da pandemia de COVID-19 a previsão era que a produção de etilbenzeno deveria atingir um valor de mercado próximo a US\$ 19.320 milhões em 2023, hoje, devido ao aumento do consumo de seus derivados durante a pandemia somado a influência da Guerra Rússia-Ucrânia, a previsão revisada é que o mercado global de etilbenzeno alcance US\$ 23.620 milhões em 2028².

A grande importância do EB se deve ao fato de, através da desidrogenação catalisada por óxido de ferro, este alquilado derivado de benzeno se torna responsável por grande parte da rota mundial de produção de estireno³.Este monômero produzido possui inúmeros usos que vão desde acrilonitrila, poliésteres insaturados, estirenobutadieno borracha, e ainda é a matéria prima principal da produção de poliestireno que é o composto mais utilizado na produção de plásticos atualmente⁴.

Outra importante saída comercial do etilbenzeno é a produção de xilenos mistos, muito utilizados na indústria como solvente para borrachas, diluente de tintas, vernizes e inseticidas, além de estar presente no petróleo, com uma presença típica de 4% (v/v) em combustíveis⁵. Entretanto, é válido citar que compostos orgânicos voláteis (COV) são um dos principais redutores da qualidade do ar em ambientes internos, em especial aqueles emitidos por veículos urbanos como o benzeno, tolueno, etilbenzeno e os isômeros de xileno, conhecidos pela sigla BTEX, dos quais os isômeros de xilenos e o etilbenzeno são os mais reativos⁶.

Com base nas premissas descritas anteriormente, o objetivo do presente trabalho é projetar e otimizar uma torre de destilação para produção de etilbenzeno com pureza de 99,8 mol% com uma capacidade 80.000 toneladas anuais para atender à demanda de 48 Mt do mercado, sendo o etilbenzeno obtido totalmente utilizado para produção de estireno ^{7,8}. Para alcançar este objetivo final, são necessários cumprir os seguintes objetivos parciais:

- Realização dos balanços de massa e energia da unidade.
- Projetar os vasos e torres que integram a unidade, sendo definidos o tamanho dos vasos, seu peso, dimensionados os elementos internos de torres e reatores.

- Projetar os sistemas de impulsionamento de fluídos.
- Projetar os sistemas de troca de calor, com atenção aos processos de integração energética.
- Indicação dos sistemas de instrumentação, controle, bem como os elementos de segurança da planta.
- Realização do diagrama P&ID da unidade T-1 (T-302) de destilação fracionada.
- Análise de viabilidade econômica do processo.

2. REFERENCIAL TEÓRICO

2.1 Etilbenzeno

O etilbenzeno (C_8H_{10}) é um hidrocarboneto aromático líquido, incolor, inflamável e com ponto de ebulição de 136°*C*. Esse composto químico é utilizado na produção de produtos intermediários como acetofenona – usada na produção de perfumes, sabões, resinas e farmacêuticos - e, principalmente, estireno. O estireno é um precursor de vários polímeros industriais, incluindo acrilonitrila-butadieno-estireno, poliestireno, elastômeros de estireno-butadieno e látex, resinas de estireno-acrilonitrila e poliéster insaturado. Esses compostos encontram uma ampla gama de aplicações em diversas indústrias de usuários finais, como eletrônica, embalagens, agricultura, petroquímica e construção.

Mais da metade do etilbenzeno mundial é produzido e consumido pelos Estados Unidos, Japão, Coreia do Sul, China, Taiwan e China Continental, sendo que sua produção e consumo vêm crescendo continuamente com o desenvolvimento da economia. Pensando na concorrência, as principais empresas detentoras desse mercado são LyondellBasell Industries Holdings BV, Chevron Phillips Chemical Company LLC, INEOS, Honeywell International Inc e Dow, sendo considerado um mercado parcialmente fragmentado.

Ao longo dos anos, a produção de etilbenzeno foi estudada por diferentes rotas, contendo catalisadores e fases distintas. As rotas de produção mais comuns são a alquilação do benzeno com propileno ou etileno, a alquilação do tolueno com metanol, a transalquilação do dietilbenzeno com benzeno, o desproporcionamento e transalquilação do tolueno e a transalquilação de trietilbenzeno com benzeno ⁹. Industrialmente, as

alquilações são os processos mais utilizados, sendo que cerca de 40% das plantas industriais de etilbenzeno mundiais empregam o processo de alquilação de Friedel-Crafts. Esse método se baseia na utilização de catalisadores à base de cloreto de alumínio (AlCl₃-HCl) e começou a ser utilizado na década de 1930, a partir dos primeiros estudos e do desenvolvimento comercial desse processo de alquilação. Apesar disso, a utilização desse catalisador causa problemas de corrosão, manuseio e descarte, o que acabou acarretando maiores custos operacionais para os fabricantes e a necessidade de desenvolvimento de processos alternativos¹⁰.

Com isso, passou-se a empregar catalisadores ácidos sólidos, que apresentam diversas vantagens em relação aos catalisadores ácidos líquidos, como o menor risco de corrosão e a eliminação de problemas ambientais, pauta que tem crescido exponencialmente nas últimas décadas ¹¹. Entre 1960 e 1970, UOP e Mobil-Badger desenvolveram suportes de catalisador e catalisadores a base de zeólitas. A partir de 1980, catalisadores modificados ZSM-5, também desenvolvidos por Mobil-Badger, passaram a ser utilizados. Dessa forma, as zeólitas se consolidaram como os catalisadores mais promissores industrialmente devido ao fato de serem mais seguros e amigáveis ao meio ambiente.

A produção de etilbenzeno (EB) envolve a reação em fase líquida do etileno (C_2H_4) com o benzeno (C_6H_6)

$$C_2 H_4 + C_6 H_6 \to C_8 H_{10} \tag{1}$$

Além disso, ocorrem algumas reações indesejadas, como a responsável pela formação do dietilbenzeno (DEB) a partir do etilbenzeno formado e o etileno

$$C_8 H_{10} + C_2 H_4 \to C_{10} H_{14} \tag{2}$$

A partir da formação do DEB, ainda é possível que esse composto passe por uma reação de transalquilação com o benzeno para formar o EB desejado

$$C_{10}H_{14} + C_6H_6 \to 2C_8H_{10} \tag{3}$$

Ademais, o benzeno que entra apresenta certa quantidade de tolueno como impureza que reage como o etileno para formar etilbenzeno e propileno.

$$C_7 H_8 + 2C_2 H_4 \to C_8 H_{10} + C_3 H_6 \tag{4}$$

Dessa forma, é possível aumentar a eficiência do processo de produção de EB ao reciclar o DEB gerado à bateria de reatores, para que haja uma maior conversão final do

produto desejado. Ademais, como forma de seletividade, é recomendável utilizar temperaturas mais baixas, uma vez que a energia de ativação da reação desejada é menor, além de manter baixas concentrações de etileno e EB no reator para evitar que reações indesejadas ocorram¹².

2.2 Processo produtivo do etilbenzeno

O etilbenzeno é produzido pela alquilação do benzeno na presença de catalisadores, sendo o etileno o agente de etilação mais frequentemente utilizado. Como mostrado anteriormente, o etilbenzeno pode posteriormente reagir com etileno para formar os polietilbenzenos. Os processos antigos se utilizavam de catálise homogênea pelo uso de uma suspensão de cloreto de alumínio como catalisador, já os mais recentes utilizam reatores de leito fixo com catálise heterogênea em zeólitas.

Em sua maioria, os processos de geração de etilbenzeno produzem esse componente para consumo interno, apresentando um processo acoplado para produção de estireno. Em geral, essas instalações acopladas apresentam energia integrada entre as plantas, em que ocorre a geração de vapor pela reação exotérmica de formação de EB e consumo desse vapor pela reação endotérmica responsável por produzir o estireno.

Pensando nas operações unitárias envolvidas no processo, a produção do etilbenzeno envolve as seguintes etapas⁸

- Mistura do benzeno: nessa etapa, o benzeno vindo da refinaria se mistura com o benzeno reciclado em um vaso *on-site* (V-301) e é bombeado até uma pressão de 2000 kPa (20 atm) necessária para a reação. Em seguida, é enviado para um aquecedor (H-301).
- Aquecimento do benzeno: em um aquecedor ou forno (H-301), o benzeno é aquecido até a temperatura de reação de aproximadamente 400°C, sendo posteriormente misturado ao etileno antes de entrar no sistema de reatores;
- Reação: o sistema de reatores consiste em três reatores adiabáticos de leito empacotado (R-301, R-302 e R-303) com adição de alimentação e resfriamento entre os estágios, sendo que a reação ocorre na fase gasosa e é exotérmica. O efluente quente e parcialmente convertido sai do primeiro reator (R-301) e se mistura com mais etileno de alimentação para então ser alimentado a um trocador de calor (E-301). Com isso, a corrente é resfriada até 380°*C* antes de seguir para

o reator subsequente (R-302). Além disso, vapor de alta pressão é produzido no E-301 e é posteriormente utilizado pela unidade de produção de estireno. De forma similar, o efluente do segundo reator (R-302) é misturado com etileno de alimentação e resfriado no trocador de calor (E-302), que também gera vapor de alta pressão, antes de entrar no terceiro e último reator (R-303). A corrente de efluente que deixa o R-303 contêm produtos, subprodutos, benzeno que não reagiu e pequenas quantidades de etileno e gases não condensáveis;

- Resfriamento do efluente do sistema de reatores: Esse efluente é resfriado em duas caldeiras de calor de resíduos (E-303 e E-304), responsáveis por gerar, respectivamente, vapor de alta e baixa pressão, que também serão usados pela unidade de produção de estireno. A mistura bifásica que deixa a caldeira E-304 é enviada a um trocador de calor refrigerado a água (E-305) para ser resfriada até 80°C
- Separação do efluente: Após resfriamento, a mistura é enviada a um separador bifásico (V-302), onde os gases leves são separados e enviados pela parte superior como gás combustível para ser consumido pelo aquecedor. O líquido condensado é enviado à torre de benzeno (T-301), onde o benzeno sem reagir é separado como produto de topo e retorna ao início do processo. Os produtos de fundo da torre T-301 são enviados à segunda torre de destilação (T-302) onde o etilbenzeno, em 99,8 mol%, sai como produto de topo e é enviado diretamente à unidade de estireno. A corrente de fundo da torre contém todo o DEB e etilbenzenos maiores. Esse produto se mistura ao benzeno reciclado e vai em direção ao aquecedor (H-301) antes de ser enviado a um quarto reator de leito empacotado (R-304), onde o excesso de benzeno reage com o DEB para formar EB pela chamada transalquilação. Por fim, o efluente desse reator é misturado à corrente líquida que entra na caldeira de calor de resíduos (E-303).

Figura 1. Fluxograma do processo de produção do etilbenzeno.⁸

2.3 Benzeno

O benzeno (C_6H_6) é um hidrocarboneto aromático líquido, altamente inflamável e volátil muito utilizado nas indústrias, em processos laboratoriais, em companhias siderúrgicas e em indústrias petroquímicas para o refino do petróleo. É utilizado como matéria-prima de diversos compostos orgânicos (estirenos, plásticos e polímeros), como aditivo em combustíveis automotivos e como parte da formulação de refrigerantes. Antigamente, era bastante utilizado como solvente orgânico de tintas e de diversos tipos de cola, entretanto foi substituído por outros solventes devido a sua alta toxicidade.

Esse composto se configura como uma das principais commodities químicas mundiais, sendo que 95% de sua produção é destinada para uso como intermediário na produção de outros compostos, predominantemente etilbenzeno, cumeno e ciclohexano.¹³ Apesar da sua ampla gama de aplicações, o benzeno é considerado um composto cancerígeno, estando ligado ao surgimento de várias doenças nos seres humanos, principalmente leucemia mieloide aguda que está relacionada à má formação de glóbulos vermelhos na medula óssea¹⁴.

As principais vias de exposição para a população geral são as vias respiratória e oral, enquanto que, para os trabalhadores, a absorção pela pele também merece atenção. Dessa forma, segundo a Organização Internacional do Trabalho, medidas de prevenção técnica e de higiene de trabalho devem ser adotadas a fim de assegurar proteção eficaz dos trabalhadores, como uso de equipamentos de proteção individual (EPI's). Além disso, locais que fabricam, manipulam e utilizam benzeno devem adotar medidas que impeçam o escapamento de vapores na atmosfera.

2.4 Etileno

O etileno ou eteno (C_2H_4) é um hidrocarboneto alceno gasoso e incolor considerado o mais simples da família das olefinas e produzido de forma natural na maioria dos tecidos das plantas. Industrialmente, o etileno é produzido principalmente através do craqueamento a vapor do etano e da nafta, derivada do petróleo. Além disso, é um composto chave na indústria química pela larga utilização na produção de diversos intermediários e polímeros. Mundialmente, seu consumo atingiu a marca de mais de 150 milhões de toneladas por ano em 2017¹⁵.

A maior parte da produção do etileno passa por uma reação de polimerização de adição que leva à formação do polietileno, polímero plástico utilizado na fabricação de objetos domésticos, garrafas, brinquedos, sacolas, revestimentos de fios, tubos, embalagens de produtos farmacêuticos, entre outros. Além disso, é o agente de etilação mais comumente utilizado na produção de etilbenzeno.

3. DESCRIÇÃO DO CENÁRIO

Para o presente projeto, optou-se por projetar parte de uma planta de produção de etilbenzeno que segue a rota de alquilação do benzeno, tendo como agente de etilação o etileno. Pensando na parte que envolve a reação em si, as matérias-primas utilizadas são benzeno e etileno, responsáveis pela formação do etilbenzeno a partir de uma reação de alquilação.

As reações envolvidas estão na seção do referencial teórico e a sua cinética pode ser representada pela equação abaixo (Equação 5) e pelas seguintes energias de ativação (Tabela 1).

$$-r_{i} = k_{o,i} e^{-\frac{E_{i}}{RT}} C_{etileno}^{a'} C_{EB}^{b'} C_{tolueno}^{c'} C_{benzeno}^{d'} C_{DEB}^{e'}$$
(5)

Em que r_i representa a velocidade da reação, $k_{o,i}$ a constante de velocidade da reação, E_i a energia de ativação da reação, R a constante universal dos gases, T a temperatura, C a concentração e a, b, c, d e e a ordem da reação para cada composto.

i	<i>E_i</i> kcal/kmol	k _{o,i}	<i>a</i> ′	b'	с′	d′	<i>e'</i>
1	22,5	1 × 10 ⁶	1	0	0	1	0
2	22,5	6×10^{5}	1	1	0	0	0
3	25	7,8 × 10 ⁶	0	0	0	1	1
4	20	3,8 × 10 ⁸	2	0	1	0	0

Tabela 1. Cinética da reação de formação do etilbenzeno ²³.

Tendo isso em mente, sabe-se que ocorrem diversas reações simultâneas e há a necessidade de separação dos compostos presentes no processo para obtenção do etilbenzeno isolado. A partir da apresentação do fluxograma do processo de forma completa (Figura 1), é possível observar a presença de duas torres de destilação (T-301 e T-302), tendo sido escolhida a segunda torre, responsável pela última etapa de separação e consequente obtenção do etilbenzeno, para projeto dos equipamentos envolvidos.

Como forma de simplificação, apresenta-se o diagrama de fluxo de processos abaixo (Figura 2), tendo como foco a torre de destilação escolhida, aqui denominada T-1.

Figura 2. Diagrama de processos da torre de destilação T-1.

Como apresentado brevemente no referencial teórico, essa torre de destilação apresenta uma corrente de entrada (2) pré-aquecida pelo trocador de calor E-1, que utiliza parte da corrente de produto de fundo (11) como corrente de aquecimento. Após entrada na torre de destilação, essa corrente sofre o processo de fracionamento, dando origem à corrente de produto de topo (3) e à corrente de produto de fundo (10). O produto de topo sofre processo de condensação (4) pelo trocador de calor E-2, que utiliza água de refrigeração como corrente auxiliar, e parte em direção ao vaso acumulador V-1. Com isso, parte desse produto (5) é bombeado pela bomba P-3 para fora da planta (13) e parte (6) é bombeado pela bomba P-1 de volta para a torre de destilação (7). Já o produto de fundo (10) é bombeado pela bomba P-2 em direção ao trocador de calor E-1 e parte dele

(8) sofre o processo de evaporação (9) pelo trocador de calor E-3, que utiliza vapor de média pressão como corrente auxiliar, e retorna para a torre de destilação.

Ao final, a partir da separação da corrente de entrada formada por 0,168% benzeno, 89,600% etilbenzeno e 10,232% dietilbenzeno, objetiva-se ter como resultado uma corrente de destilado rica em etilbenzeno com grau de recuperação de 99% e uma corrente de fundo rica em dietilbenzeno com grau de recuperação de 99,999%.

Pensando na parte econômica do projeto envolvendo apenas a torre T-1, esse projeto focará no cálculo dos gastos relacionados aos três trocadores de calor (E-1, E-2 e E-3), às três bombas (P-1, P-2 e P-3), ao vaso acumulador (V-1) e à torre de destilação em si. Além disso, deve-se levar em conta gastos de operação relacionados à parte elétrica e à utilização das correntes auxiliares de troca de calor, sempre levando em conta a operação de 8000h/ano. Por fim, todos os custos de instalação dos equipamentos serão anualizados multiplicando o valor obtido por 0,333.

A seguir, serão apresentadas as características das correntes materiais necessárias para o projeto dos equipamentos supracitados, assim como os cálculos de custos desses equipamentos.

3.1 Balanço de Massa e Energia

Considera-se a coluna abaixo, o balanço de massa será realizado sobre o componente mais volátil, que no caso é o produto de topo, etilbenzeno (EB). Sabe-se que o destilado tem que haver 99% de etilbenzeno, então 99% que entra na corrente de alimentação de EB tem que sair na corrente de destilado.

Figura 3. Representação genérica do balanço de massa sobre as principais correntes do processo.

A corrente de entrada F é 11020kg/h representa a vazão mássica total de entrada e a fração correspondente de EB é de 87,27%, a quantidade de EB que passa é dado pelo produto da fração molar pela corrente de entrada e sua fração mássica. Realizando o balanço global, considerando que a coluna já esteja em estado estacionário e que não haja acumulo, se tem

$$F = D + B$$

Realizando o balanço por componente:

$$F \times X_f = D \times X_d + B \times X_B$$

Pela ação do fracionamento, é possível formar uma corrente de destilado rica em EB com grau de recuperação de 99,26% que representa a fração mássica de destilado e 0,74% que representa o valor da fração do fundo. Assim com as equações de balanço global e componente é possível determinar as principais correntes.

Outro fator importante que deve se levar em consideração no balanço de massa, são as linhas de operação. A alimentação é feita no meio dos pratos, pode-se dividir em duas grandes regiões. A primeira delas é a região de topo, também conhecida como região de retificação, em que o vapor vai ficando cada vez mais rico no componente mais volátil, já a segunda região chamada de região de fundo ou região de esgotamento a fase líquida vai ficando mais rica no componente menos volátil.

Figura 4. Representação esquemática das principais regiões de uma torre de destilação.¹⁶

Para a análise da Linha de Operação Superior ou de Retificação (LOS) é necessário saber que, tomando determinado volume de controle, considera-se o balanço de massa a partir do esquema abaixo.

Figura 5. Volume de controle na região de retificação.

Considera-se a seguinte igualdade para o balanço de massa no topo da coluna que permite a análise global e por componente do sistema

Entrada = saída $V_{n+1} = L_n + D$ $V_{n+1}y_{n+1} = L_n x_n + D x_d$

Como as vazões em todos os estágios apresentam valores muito próximos, é possível fazer a seguinte aproximação $V_n \cong V$, assim como para o caso das correntes de líquido, em que $L_n \cong L$. Isso ocorre devido ao contato entre as fases, que faz com que cada quantidade de matéria de vapor condensado libere energia suficiente para a vaporização de uma mesma quantidade de matéria da mistura de líquido, mantendo as vazões constantes ao longo da coluna. ¹⁷Com isso, a linha de operação de retificação ou LOS pode ser descrita como sendo

$$y_{n+1} = \frac{L}{V}x_n + \frac{D}{V}x_D$$

A equação acima se assemelha a equação da reta, com isso é possível determinar o comportamento da composição de vapor ao longo dos estágios.

Para a análise da Linha de Operação Inferior ou de Esgotamento (LOI) é realizada uma análise similar à anterior, considerando-se o balanço de massa a partir do esquema abaixo.

Figura 6. Volume de controle na região de esgotamento.

Paralelamente, realiza-se os seguintes balanços de massa global e por componente para a base da coluna, região de esgotamento se tem:

Entrada = saida $L_{m+1} = V_m + B$ $L_{m+1}x_{m+1} = V_m y_m + Bx_h$

Realizando a mesma aproximação $L_{m=}\overline{L}$ e $V_{m=}\overline{V}$ e portanto, a equação para a parte inferior da coluna é

$$y = \frac{\bar{L}}{V}x - \frac{B}{\bar{V}}x_B$$

Assim, como realizado anteriormente a equação acima mostra como a composição de vapor varia com a região de fundo dessa seção.

Parâmetros do processo:

- F representa a corrente de alimentação e x_f representa a fração mássica de alimentação;
- *V*, *V*, *L* e *L* representam respectivamente a corrente de vapor (estágio n), a corrente de vapor no estágio (estágio n-1), a corrente de líquido (estágio n) e a corrente de líquido (estágio n-1);
- $D e x_D$ representam a corrente de destilado e a fração mássica de destilado;
- $B \in x_B$ representam a corrente de fundo e a fração mássica de fundo

Outra medida importante para se levar em consideração no balanço de massa é a razão de refluxo. A razão de refluxo é uma medida importante na indústria química, pois permite controlar a qualidade de uma reação química. Como afirma o químico Peter Atkins, "A razão de refluxo é uma medida da eficiência de uma reação. Quanto maior a razão de refluxo, mais eficiente é a reação."¹⁸

A razão de refluxo é calculada dividindo o número de mols de material condensado retornados ao reator pela quantidade de mols consumidos na reação. Quando a razão de refluxo é alta, significa que a maior parte do material condensado está sendo retornado ao reator, o que aumenta a eficiência da reação. Além disso, a razão de refluxo também é importante porque permite controlar a temperatura da reação. Quando a razão de refluxo é ajustada corretamente, a temperatura do reator pode ser mantida constante, o que é fundamental para o sucesso da reação química. Em resumo, a razão de refluxo é uma medida crucial na indústria química, pois permite controlar a qualidade e a eficiência da reação química. É importante entender a importância da razão de refluxo e como ajustá-la corretamente para garantir resultados ótimos.

Existem diversos tipos de energia, como, por exemplo, Calor, Trabalho, Energia Cinética, Energia Potencial, Energia elétrica, entre outras. Da mesma forma que a matéria, a energia de um sistema não pode ser destruída, mas pode ser transformada em outros tipos de energia. Com isso, é sempre necessário realizar o balanço energético de um sistema para analisar como a energia está sendo transformada e de que forma ela deve e pode ser aproveitada. Para o caso de uma torre de destilação, os principais balanços materiais do processo são o balanço térmico global (Equação 6) e o balanço térmico no condensador (Equação 7).

$$Fq_F + Q_r = Dq_D + Bq_B + Q_C \tag{6}$$

$$Vq_V = Lq_L + Dq_D + Q_C \tag{7}$$

No balanço térmico global, F é a vazão mássica de alimentação, Q_r o calor introduzido pelo refervedor, D a vazão mássica do destilado, q_D o calor contido no destilado, B a vazão mássica do produto de fundo, q_B o calor contido no produto de fundo e Q_c o calor retirado pelo condensador. Já para o balanço do condensador, V é a vazão mássica do vapor de topo, q_V o calor contido no vapor de topo, L a vazão mássica do refluxo externo e q_L o calor contido no refluxo externo.¹⁹

4. PROJETO DA PLANTA

O projeto da planta visa promover a construção de uma unidade de produção de etilbenzeno eficiente, segura e de qualidade. Para isso, serão apresentadas as tabelas que caracterizam as correntes do processo, seguindo o modelo das folhas de especificação. Nos tópicos a seguir, serão descritos os equipamentos que fazem parte da planta em questão.

CORRENTES MATERIAIS			
Número de corrente	1		
Descrição	Corrente de entrada da	a torre T-1	
Pressão	1,9375	kg/cm ² g	
Temperatura	145,4	°C	
Vazão mássica	11024,5	Kg/h	
Vazão molar	101,15	Kmol/h	
Entalpia total	-	Mkcal/h	
Fração de sólidos	0		
Fração de vapor	0		
PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T de operação	16,16	m ³ /h	

Tabela 2. Dados referentes à corrente 1.

Peso molecular	103,8	Kg/kmol
Densidade	763,4	Kg/m ³
Viscosidade	0,2131	cP
Condutividade térmica	0,1119	W/m·°C
Calor específico	1,999	kJ/kg·°C
Tensão superficial	16,87	dinas/cm
Р	ROPRIEDADES DA FASE VAPOR	/GÁS
Vazão volumétrica @P e T		m ³ /h
de operação	-	111 / 11
Peso molecular	-	Kg/kmol
Densidade	-	Kg/m ³
Viscosidade	-	сР
Condutividade térmica	-	W/m·°C
Calor específico	-	kJ/kg·°C
Fator de	_	
compressibilidade		
	COMPOSIÇÃO	
Componente	Fração molar	Fração mássica
Etileno	0	0
Etano	0	0
Propileno	0	0
Benzeno	0,00168	0,0012
Tolueno	0	0
Etilbenzeno	0,896	0,8727
1,4-Dietilbenzeno	0,10232	0,1260

Tabela 3. Dados referentes à corrente 11.

CORRENTES MATERIAIS			
Número de corrente	11		
Descrição	Corrente de saída da torre T-1		
Pressão	1,4276	kg/cm ² g	
Temperatura	191,1	°C	
Vazão mássica	1485,9	Kg/h	
Vazão molar	11,3	Kmol/h	
Entalpia total	-	Mkcal/h	
Fração de sólidos	0		
Fração de vapor	0		

PROPRIEDADES DA FASE LÍQUIDA					
Vazão volumétrica @P e T de operação	0,3021	m³/h			
Peso molecular	115	Kg/kmol			
Densidade	738,7	Kg/m ³			
Viscosidade	0,2086	cP			
Condutividade térmica	0,1085	W/m·°C			
Calor específico	2,136	kJ/kg·°C			
Tensão superficial	15,05	dinas/cm			
PROPRIEDADES DA FASE VAPOR/GÁS					
Vazão volumétrica @P e T		m ³ /h			
de operação	_	111 /11			
Peso molecular	-	Kg/kmol			
Densidade	-	Kg/m ³			
Viscosidade	-	сР			
Condutividade térmica	-	W/m·°C			
Calor específico	-	kJ/kg· °C			
Fator de		1			
compressibilidade	-				
	COMPOSIÇÃO				
Componente	Fração molar	Fração mássica			
Etileno	0	0			
Etano	0	0			
Propileno	0	0			
Benzeno	0				
Tolueno	0	0			
Etilbenzeno	0,0808	0,0650			
1,4-Dietilbenzeno	0,9192	0,9350			

Tabela 4. Dados referentes à corrente 13.

CORRENTES MATERIAIS		
Número de corrente	13	
Descrição	Corrente de saída de	etilbenzeno
Pressão	1,1217	kg/cm ² g
Temperatura	139	°C
Vazão mássica	9538,6	Kg/h
Vazão molar	89,9	Kmol/h

Entalpia total	-	Mkcal/h	
Fração de sólidos	0		
Fração de vapor	0		
PROPRIEDADES DA FASE LÍQUIDA			
Vazão volumétrica @P e T	15 70	m ³ /h	
de operação	15,79	111 /11	
Peso molecular	103,6	Kg/kmol	
Densidade	767,1	Kg/m ³	
Viscosidade	0,2182	сР	
Condutividade térmica	0,1128	W/m·°C	
Calor específico	1,584	kJ/kg·°C	
Tensão superficial	17,23	dinas/cm	
PROPRIEDADES DA FASE VAPOR/GÁS			
Vazão volumétrica @P e T		m ³ /h	
de operação	-	111 /11	
Peso molecular	-	Kg/kmol	
Densidade	-	Kg/m ³	
Viscosidade	-	сР	
Condutividade térmica	-	W/m·°C	
Calor específico	-	kJ/kg·°C	
Fator de	_	•	
compressibilidade			
COMPOSIÇÃO			
Componente	Fração molar	Fração mássica	
Etileno	0	0	
Etano	0	0	
Propileno	0	0	
Benzeno	0,0019	0,0014	
Tolueno	0	0	
Etilbenzeno	0,9981	0,9986	
1,4-Dietilbenzeno	0,0000	0,0000	

4.1. Correntes de processo

Após a apresentação das principais características das correntes do processo, é necessário descrever cada uma delas a partir da sua atuação dentro da planta. Para isso, utiliza-se como base o diagrama de fluxo de processos apresentado na figura 2 que tem

como foco a torre de destilação (T-1), responsável pela obtenção final do etilbenzeno puro.

A corrente 1, formada por benzeno, etilbenzeno e dietilbenzeno, entra no trocador de calor (E-1), que é responsável por promover o pré-aquecimento da corrente 2 ou corrente de alimento da torre T-1. Após o fracionamento na torre de destilação, a corrente 3 sai como produto de topo rico em etilbenzeno e passa pelo condensador E-2 para então deixá-lo na forma de destilado (corrente 4). Com isso, a corrente 4 se destina ao vaso pulmão (V-1), responsável por armazenar o destilado. A partir desse ponto, parte do destilado (corrente 6) é bombeado pela bomba P-1 e retorna à coluna de destilação (corrente 7) com maior pressão, visando uma melhor separação dos componentes. Enquanto isso, a corrente 5 é bombeada pela bomba P-3 até 200 kPa, gerando a corrente 13 que deixa o processo com destino à planta de estireno.

Já o produto de fundo, rico em dietilbenzeno e resíduos de etilbenzeno superiores, é dividido em duas correntes. A corrente 8 passa pela caldeira do tipo Reboiler e retorna à torre de destilação na forma de vapor (corrente 9), a fim de melhorar a separação e introduzir mais calor ao sistema. A corrente 10 passa pela bomba P-2, tem sua pressão elevada até 2000 kPa e se destina ao trocador de calor E-1 como corrente 11. Por fim, a corrente 11 deixa o trocador de calor como corrente 12. Essa integração tem como objetivo reduzir o consumo de energia da torre pelo reaproveitamento do calor para aquecimento da corrente de entrada do sistema.

4.2. Bombas

As bombas são máquinas que transferem energia ao fluido com a finalidade de transportá-lo de um ponto a outro. Elas recebem energia de uma fonte motora e cedem parte dela ao fluido, na forma de energia de pressão e/ou energia cinética, aumentando sua pressão e velocidade²⁰. Com isso, torna-se de suma importância a relação entre a energia cedida pela bomba ao fluido e a energia que esta recebeu da fonte motora, uma vez que esse dado determina o rendimento da bomba. Sendo assim, utiliza-se dessa relação no momento de escolha da bomba ideal para determinado processo.

As bombas são classificadas, basicamente, em volumétricas, ou de deslocamento positivo, e turbobombas, também chamadas de cinéticas ou bombas de fluxo. Bombas

volumétricas possuem uma ou mais câmaras que contêm um elemento móvel responsável por aumentar a pressão e provocar o movimento. Dessa forma, o fluido ocupa e desocupa, de forma sucessiva, espaços dentro da bomba, sendo que o movimento do fluido se dá na mesma direção das forças aplicadas sobre ele e por isso a bomba também é classificada como de deslocamento positivo. Por fim, essas bombas se dividem em alternativas, como as de pistão, diafragma e membrana, e em rotativas, como as de engrenagem, peristálticas, helicoidais, entre outras.

No caso das turbobombas, a energia é fornecida ao líquido por meio de um rotor (impulsor ou impelidor) responsável por aumentar sua energia cinética, que será convertida em energia de pressão²¹. O líquido entra na carcaça da bomba de forma axial e sai do equipamento em movimento radial devido à ação da força centrífuga. Por conta disso, essas bombas são usualmente chamadas de bombas centrífugas (Figura 4).

Para o projeto das três bombas (P-1, P-2 e P-3) presentes na planta de produção do etilbenzeno, optou-se por desenvolver bombas centrífugas devido a sua alta eficiência, baixo custo, fácil operação e por serem as mais utilizadas em indústrias químicas. A seguir, serão apresentadas as bases de cálculo de projeto das bombas que envolvem a determinação das correntes de impulsão e de admissão, a potência consumida e o custo associado a cada uma delas.

Primeiramente, é necessário calcular a potência consumida pela bomba (W_{bomba}), a partir dos dados de vazão volumétrica (\dot{Q}), diferença entre a pressão de admissão e a pressão de impulsão (ΔP) e as eficiências elétrica (η_e) e hidráulica (η_h). A fórmula é dada pela **e**quação abaixo.

$$W_{bomba} = \frac{\dot{Q}\Delta P}{\eta_e \eta_h}$$

Em geral, as eficiências elétrica e hidráulica variam na faixa de 85 a 95% e 30 a 60%, respectivamente. Nesse caso, utilizam-se os valores médios de 90% e 45%.

O custo total da bomba (C_{bomba}) é obtido pela soma do custo da carcaça (C_c) e do custo do motor (C_m) e deve ser multiplicado por dois. Isso se deve ao fato de que as bombas devem ser instaladas de forma duplicada para casos de falha em um dos equipamentos, assim evitando que o processo seja interrompido. Tendo isso em mente, seguem abaixo as equações de custo das bombas.

$$C_c = 8000 + 240 \times S^{0,9}$$

 $C_m = -1100 + 2100 \times S^{0,6}$
 $C_{bomba} = (C_c + C_m) \times 2$

Em que S representa a vazão volumétrica do fluido que entra no equipamento em L/s e a potência da bomba em kW, respectivamente.

Por fim, adicionando-se o fator de Hand (f) igual a 4 para contabilizar custos de instalação, obtém-se o custo total da bomba, incluindo o equipamento em si e a sua instalação.

$$C_{bomba,t} = C_{bomba} \times 4$$

Já para o custo anual da parte elétrica, ou seja, o gasto com energia para o funcionamento das bombas, considerou-se um tempo de operação de 8000h/ano e um custo de USD 0,06 por kWh, segundo a equação abaixo.

$$C_{energia} = W_{bomba} \times 8000 \times 0,06$$

Além de toda essa análise de custo, é importante se atentar ao valor de NPSH (Net Positive Suction Head) requerido e disponível na hora de escolher a bomba ideal para uma planta específica. Essa característica é definida como a diferença entre a pressão de sucção e a pressão de vapor do líquido com a bomba em funcionamento normal, sendo de extrema importância para evitar que ocorra a cavitação do equipamento. Esse fenômeno ocorre quando a pressão de um líquido a uma temperatura constante desce abaixo do ponto de pressão de vapor saturado, o que acaba gerando bolhas de ar no líquido²³.

Sendo assim, o NPSH disponível, referente à pressão absoluta exercida pelo sistema na entrada da bomba, deve ser maior que o NPSH requerido fornecido pelo fabricante, referente à pressão mínima exigida na entrada da bomba para evitar cavitação. Portanto, cabe ao projetista calcular o NPSH disponível através da fórmula abaixo.

$$NPSH_{disponível} = \frac{P_{adm} - P_v}{\rho g} - h_f \pm H$$

Em que P_v representa a pressão de vapor do líquido, ρ representa a densidade do líquido, g a aceleração da gravidade, h_f as perdas por fricção na linha de admissão e H a altura geométrica da admissão.

4.2.1. Projeto da bomba P-1

A bomba P-1 é responsável por realizar o bombeamento de parte do destilado advindo do vaso pulmão (corrente 6) de volta para a torre de destilação, sendo, portanto, conhecida como bomba de refluxo. Essa ação tem como objetivo melhorar a eficiência da torre, ou seja, aumentar a separação dos componentes. A seguir, é possível observar o modelo representativo da bomba (Figura 4) e os seus parâmetros característicos utilizados para o cálculo de custo (equipamento + instalação).

Figura 8. Modelo usado para projeto de bomba P-1

Tabela 5. Parâmetros característicos da bomba P-1.

Parâmetro característicos	Valor
Pressão na admissão (kPa)	37,5331
Pressão na impulsão (kPa)	215,048
Diferença de pressão (kPa)	177,5149
Pressão de shut-off (kPa)	213,0179
Vazão volumétrica (m ³ /h)	8,6130
Potência consumida pela bomba (kW)	1,0487
Custo (\$)	47147,8083
Custo anual de eletricidade (\$)	503,3533
Custo anualizado total (\$)	16203,5735

4.2.2. Projeto da bomba P-2

A bomba P-2 é responsável por fazer o bombeamento da corrente de produto de fundo que sai da torre T-1 até a entrada do trocador de calor E-1. A seguir, é possível observar o modelo representativo da bomba (Figura 5) e os seus parâmetros característicos utilizados para o cálculo de custo (equipamento + instalação).

Figura 9. Modelo usado para projeto de bomba P-2.

Parâmetro característicos	Valor
Pressão na admissão (kPa)	10
Pressão na impulsão (kPa)	1900
Diferença de pressão (kPa)	1890
Pressão de shut-off (kPa)	2268
Vazão volumétrica (m ³ /h)	1,7165
Potência consumida pela bomba (kW)	2,1898
Custo (\$)	41536,55
Custo anual de eletricidade (\$)	1051,082
Custo anualizado total (\$)	14882,752

Tabela 6. Parâmetros característicos da bomba P-2.

4.2.3. Projeto da bomba P-3

A bomba P-3 é responsável por fazer o bombeamento de parte da corrente de destilado, rica em etilbenzeno, que deixa o vaso acumulador em direção à saída da planta. A seguir, é possível observar o modelo representativo da bomba (Figura 6) e os seus parâmetros característicos utilizados para o cálculo de custo (equipamento + instalação).

Figura 10. Modelo usado para projeto de bomba P-3.

Tabela 7. Parâmetros característicos da bomba P-3.

Parâmetro característicos	Valor
Pressão na admissão (kPa)	10
Pressão na impulsão (kPa)	1900
Diferença de pressão (kPa)	1890

Pressão de shut-off (kPa)	2268
Vazão volumétrica (m ³ /h)	10,9642
Potência consumida pela bomba (kW)	14,2128
Custo (\$)	71509,67
Custo anual de eletricidade (\$)	6822,15
Custo anualizado total (\$)	30634,87

4.3. Trocadores de calor

Em um sistema industrial os trocadores de calor são de extrema importância, esses dispositivos permitem a troca de calor de dois fluidos que estão em diferentes temperaturas sem que haja um contato entre eles. Geralmente, a transferência de calor em um trocador de calor acontece por meio da convecção em cada fluido e a condução entre a parede que separa os dois fluidos ¹⁶.

Existem vários tipos de trocadores de calor, onde a escolha desses dispositivos dependerá das variáveis características do processo, tais como: a pressão e temperatura de operação, características dos fluidos de trabalho e área de troca térmica. Logo, para a planta de produção do etilbenzeno faz-se necessário a utilização de três trocadores de calor, o E-1 para a corrente de entrada, o E-2 e E-3 para as correntes de saída do processo.

No processo de produção de etilbenzeno foram utilizados trocadores de calor de casco e tubo de cabeçote flutuante, que são largamente utilizados em refinarias de petróleo e apresentam alta confiabilidade e eficiência. Estes são trocadores que contém um vasto número de tubos inseridos em um casco com seus respectivos eixos paralelos ao do casco. Logo, a transferência de calor ocorre com um fluido de escoamento no interior dos tubos, ao mesmo tempo que, o outro fluido escoa fora dos tubos, por meio do casco. Normalmente, coloca-se *chicanas* no casco para fazer com que o fluído percorra toda a sua superfície, logo assim aumentando a transferência de calor e conservando a uniformidade do espaçamento entre os tubos ¹⁶.

Levando em consideração as condições do sistema, foi feito primeiramente o dimensionamento dos três trocadores de calor calculando-se a diferença de temperatura média logarítmica (ΔT_{ml}):

$$\Delta T_{ml} = \frac{(T_1' - T_2'') - (T_2' - T_1'')}{\ln \frac{(T_1' - T_2'')}{(T_2' - T_1'')}}$$

No qual, T'_1 é a temperatura de entrada do fluido quente, T'_2 é a temperatura de saída do fluido quente, já nas variáveis T''_1 e T''_2 temos a temperatura de entrada do fluído frio e a temperatura de saída do fluído frio, respectivamente. Assim, determinada a diferença de média logarítmica foi possível fazer o cálculo da estimativa do fator de correção F_t da diferença de temperatura:

$$F = \frac{\sqrt{(R^2 + 1)} \ln\left[\frac{(1 - S)}{(1 - RS)}\right]}{(R - 1) \ln\left[\frac{2 - S\left(R + 1 - \sqrt{(R^2 + 1)}\right)}{2 - S\left(R + 1 + \sqrt{(R^2 + 1)}\right)}\right]}$$

Em que, para vaporizadores e condensadores F_t é igual a 1. Então, foi feito o cálculo da área de troca térmica A, um dos principais parâmetros de projeto de um trocador de calor do tipo casco e tubo:

$$A = \frac{Q}{U \times \Delta T_{ml} \times F_t}$$

Onde, Q é o calor transferido por unidade de tempo e U é o coeficiente global de transferência de calor. Isto posto, calculou-se a área de cada tubo do trocador (A_{tubo}):

$$A_{tubo} = \pi \times D_t \times L_t$$

No qual, D_t é o diâmetro do tubo e L_t é o comprimento do tubo. Então, com o valor da área dos tubos foi calculado o número de tubos por meio da razão da área térmica e da área do tubo:

$$N_{tubos} = \frac{A}{A_{tubos}}$$

Com os valores da área de troca térmica, foi estimado os custos dos trocadores (C_{cc}) , em dólar, fundamentado nas correlações disponibilizadas na Tabela 6.6 do livro Chemical Engineering Design. Logo, para os trocadores de calor de casco e tubo utilizouse os valores de a = 32000, b = 70 e n' =1,2 conforme a fórmula abaixo:

$$C_{cc} = a + b \times S^n$$

Em que a, b e n são parâmetros que dependem do tipo de trocador de calor e S é a área calculada do trocador.

Em suma, com os valores dos custos de compras dos trocadores, foi possível calcular o custo de instalação (C_i) do mesmo, conforme a expressão abaixo:

$$C_i = f C_{cc}$$

Na qual f_{Lang} é o Fator de Lang, parâmetro utilizado para todos os trocadores de calor no valor de 3,5. Então, diante do exposto, os próximos subtópicos abordarão circunstanciadamente o dimensionamento de cada trocador de calor.

4.3.1 Projeto do trocador de calor E-1

Como explicitado anteriormente, esse trocador de calor (Figura 8) tem como objetivo aquecer a corrente de alimentação, formada por benzeno, etilbenzeno e dietilbenzeno, antes da sua entrada na torre de destilação T-301. Como forma de reduzir o consumo de energia da planta, parte do produto de fundo (corrente 11) é bombeado e integrado a esse trocador para atuar como fluido auxiliar de aquecimento.

Figura 12. Esquema do projeto do trocador E-1.

Os parâmetros característicos do equipamento utilizados para o projeto se encontram na Tabela 8 abaixo, assim como o resultado de custo anualizado do equipamento. Nesse caso, o fator de correção F_t de diferença de temperatura é diferente de 1 e foi calculado utilizando a fórmula explicitada no tópico anterior.

Tabela 8. Parâmetros característicos do trocador de calor E-1.

Parâmetro característicos	Valor
Temperatura de entrada do fluído de processo (°C)	145,4
Temperatura de saída do fluído de processo (°C)	147
Temperatura de entrada de fluído de processo 2 (°C)	192,3
Temperatura de saída de fluído de processo 2 (°C)	147,3
Calor trocado (kcal/h)	36100
Área de troca (m ²)	17,4738
Número de tubos	48
Custo (\$)	119586,3
Custo anualizado total (\$)	39822,24

4.3.2 Projeto do trocador de calor E-2

O condensador E-2 (Figura 9) é um trocador de calor cuja função é condensar a corrente que sai pelo topo da coluna (corrente 3). A corrente sai da coluna na forma de vapor entra em E-2, onde ocorre a mudança de fase. A corrente que sai do condensador segue na forma líquida (corrente 4) e passa para o vaso pulmão (V-1), de onde uma parte

desse líquido é direcionado para outra unidade da planta como produto de topo (correntes 5 e 13) e a outra parte retorna para a coluna em forma de refluxo (correntes 6 e 7).

Figura 13. Esquema do projeto do trocador E-2.

Da mesma maneira que o trocador do tópico anterior, os parâmetros característicos desse equipamento utilizados para o projeto se encontram na Tabela 9 abaixo, assim como o resultado de custo anualizado do equipamento.

Tabela 9. Parâmetros característicos do trocador de calor E-2.

Parâmetro característicos	Valor
Temperatura de entrada do fluído de processo (°C)	139
Temperatura de saída do fluído de processo (°C)	138,9
Temperatura de entrada da água de refrigeração (°C)	30
Temperatura de saída da água de refrigeração (°C)	45
Calor trocado (kcal/h)	1283232,96
Área de troca (m ²)	17,3347
Número de tubos	48
Custo (\$)	119513,9515
Custo anual água de refrigeração (\$)	18079,69163
Custo anualizado total (\$)	57877,8375

4.3.3 Projeto do trocador de calor E-3

O trocador de calor E-3 (Figura 10) é um refervedor tipo caldeira responsável por aquecer e vaporizar o produto de fundo da torre de destilação (corrente 8). As caldeiras são equipamentos destinados a produzir e acumular vapor sob pressão superior à atmosférica, utilizando qualquer fonte de energia. Nesse caso, a fonte de calor é advinda de um vapor de média pressão (MPS) que atua como corrente de serviço e promove o retorno à torre do produto de fundo na fase gasosa (corrente 9).

Figura 14. Esquema do projeto do trocador E-3.

Os parâmetros característicos do equipamento utilizados para o projeto se encontram na Tabela 10 abaixo, assim como o resultado de custo anualizado do equipamento.

Tabela 10. Parâmetros característicos do trocador de calor E-3.

Parâmetro característicos	Valor
Temperatura de entrada do fluído de processo (°C)	183,8
Temperatura de saída do fluído de processo (°C)	191,3
Temperatura de entrada do vapor de média pressão (°C)	212
Temperatura de saída do vapor de média pressão (°C)	212
Calor trocado (kcal/h)	1250000
Área de troca (m ²)	57,1510
Número de tubos	157
Custo (\$)	143448,1466
Custo anual operativo do vapor (\$)	261732,3004
Custo anualizado total (\$)	309500,5332

4.4. Vasos pulmões

Em plantas de separação de destilados um componente muito importante são os vasos pulmão, eles atuam como acumuladores de fluidos capazes de manter o ritmo da

produção garantindo fluxo de material para a unidade quando a demanda aumenta ou reservando para situações de falta de insumo.

A configuração mais comum dos vasos pulmão é horizontal pelo fato de possuírem uma relação gás/líquido mais baixa e seu projeto é definido a partir da velocidade linear máxima ascendente permissível para o gás não arrastar gotículas de líquido.

Para a planta de produção de etilbenzeno o vaso V-1 atua como vaso de refluxo da torre T-1, retornando uma fração líquida e liberando uma fração de destilado para a bomba P-3.⁸ Inicialmente para projetar o vaso é necessário calcular o volume de líquido (V_L) necessário para atender a demanda operacional, considerando-se um tempo de retenção (r) de 15 minutos para garantir a segurança do processo:

$$V_L = Q_L \times r$$

Em que, Q_L é a vazão volumétrica de líquido para uma torre de 46 pratos.

$$V_L = 21,2 \frac{m^3}{h} \times \frac{15 \min}{60 \min/h} = 5,3 m^3$$

Sabendo o volume de líquido que a o vaso receberá e considerando que seu nível normal seja de 50% do volume total, por questões de segurança, sendo o nível superior HLL correspondente a 80% do diâmetro e o LLL correspondente a 20% da altura. então tem-se que o volume do vaso (V_V) dado pelo dobro do volume de líquido:

$$V_V = 2 \times 5,3 \ m^3 = 10,6 \ m^3 \sim 11 m^3$$

Figura 15. Esquema do vaso pulmão V-1.

Assim, é possível trabalhar a otimização do diâmetro do vaso (D_V) a partir da razão com o comprimento (L_V) considerando um valor típico entre 2 e 5:

$$D_V = \sqrt[3]{\frac{4 \cdot V_V}{\pi \cdot (L_V/D_V)}}$$

A partir desses valores determinar a espessura (t) do vaso utilizando a seguinte fórmula empírica:

$$t = \frac{P_i D_i}{2SE - 1, 2P_i}$$

Onde, D_i é o diâmetro interno do vaso calculado, P_i é a pressão de projeto interna, considerando que o perfil de pressão de 1,4 bar no fundo que em valor relativo seria 0,4 bar. Como é um valor bem baixo utiliza-se o limite mínimo de projeto que é 3,5kg/cm².

O próximo parâmetro da equação é o S_s que é a eficiência da solda que para extremidades duplamente soldadas tem o valor típico de 0,85. Por fim, o parâmetro *E* é a tensão máxima de resistência do material, como a faixa de operação não ultrapassa 500°F é possível escolher 12,9 ksi (88,94 N/mm²). É adequado ainda considerar um acréscimo de sobre espessura por corrosão de 3mm¹⁵.

Então calcula-se o peso do vaso (W_{ν}) por:

$$W_{\nu} = 240C_{w}D_{i}(L+0.8D_{i})t$$

Sendo $C_w = 1,08$ para vasos. O valor obtido está na unidade de força (N), então deve-se dividir pela aceleração da gravidade obtendo o peso em quilogramas do equipamento.

Então é possível estimar o custo do vaso (C_e) a partir da seguinte fórmula:

$$C_e = a + bS^n$$

Em que para um vaso horizontal de aço inoxidável a = 12.800, b = 73 e n = 0,85 são parâmetros retirados da Tabela 6.6 do Chemical Engineering Design. O custo de instalação em geral é de 4 vezes o custo de compra do equipamento, e considerando a Tabela 6.11 do Chemical Engeneering Desing, para uma taxa de desconto de 15% em um

horizonte temporal da unidade de 10 anos a ACCR, do inglês *Annual Capital Charge Ratio* é de 0,199¹⁵.

Desta forma, utilizando a ferramenta de otimização do software Excel (Solver) e dados os parâmetros característicos do vaso obteve-se os seguintes resultados:

Parâmetro característicos	Valor
Comprimento do vaso (m)	6,3
Diâmetro do vaso (m)	1,5
Espessura do vaso (mm)	6,3
Nível máximo de líquido (m)	1,2
Nível normal de líquido (m)	0,75
Nível mínimo de líquido (m)	0,3
Pressão de projeto (kPa)	344
Temperatura de projeto (°C)	260

Tabela 11. Parâmetros característicos do vaso V-1.

 Tabela 12. Otimização econômica do vaso V-1.

Otimização econômica	Valor
Peso (kg)	1.840
Custo do equipamento (\$)	56.294
Custo total (equipamento + instalação) (\$)	225.176
Custo anualizado 15% por 10 anos (\$)	74.984

4.5. Torres de separação

A destilação é uma operação extensamente utilizada em indústrias químicas que permite a separação de misturas de componentes líquidos através da evaporação e condensação desde que estes tenham volatilidades distintas, desta forma o agente de separação é o calor. No processo de destilação fracionada a separação das substâncias é bastante vantajosa pelo fato de ocorrer vaporizações e condensações sucessivas que enriquece a fração vaporizada com as substâncias mais voláteis, permitindo obter um destilado muito próximo da pureza¹⁹.

As colunas de destilação funcionam como um grande vaso em que a base é aquecida promovendo a evaporação dos compostos mais voláteis, estes vapores tendem a ascender para o topo da coluna. Durante o percurso, parte dos condensados não

atravessa todos os pratos, condensando e retornando para a fração líquida. Este movimento de vapor ascendente e líquido descendente ocorre durante todo o processo fazendo com que os componentes mais pesados retornem à base da coluna e aumentando a eficiência da separação ¹⁹.

Figura 16. Princípios de torres de destilação²⁵.

A alimentação com a mistura a ser destilada (etilbenzeno + dietilbenzeno) da coluna a ser otimizada neste trabalho ocorre no ponto médio para garantir o equilíbrio líquido/vapor, e a mistura a ser separada desce até atingir sua base, onde está localizado um refervedor que atual aumentando a temperatura da mistura até que esta atinja o ponto de ebulição emitindo vapores em sentido ascendente, em contracorrente com o fluxo de alimentação ²⁶. O ponto de ebulição do etilbenzeno (EB) é 136 °C e o do dietilbenzeno (DEB) é 180°C fazendo com que o fracionamento seja de EB pelo topo da coluna onde o vapor encontra um condensador, retornando à fase líquida como produto, e de DEB pelo fundo como subproduto, ambos com graus de recuperação de pelo menos 99% ²⁷.

Inicialmente para projetar a torre de destilação T-1 considera-se sua estrutura como um vaso. Utilizando o Software Aspen HYSYS é possível realizar simulações do projeto da torre e obter dados das condições internas de operação. Assim sabe-se que a maior vazão volumétrica de gás foi obtida no topo da torre, onde há maior fluxo de destilado, no primeiro prato. A máxima vazão volumétrica de vapor (Q_{vap}) obtida foi de 4.533 kg/m^3 , com uma densidade do gás (ρ_G) de 3,54 kg/m^3 e uma densidade do líquido em contracorrente (ρ_L) de 757,15 kg/m^3 .

Assim pela equação de York determina-se a velocidade limite (v_{lim}):

$$v_{lim} = \sqrt{\frac{\rho_L - \rho_G}{\rho_G}} = 1,022 \text{ m/s}$$

E através da velocidade limite, que possui uma relação direta com a seção transversal mínima $(S_{mín})$ e a vazão de vapor:

$$S_{min} = \frac{Q_{vap}}{v_{lim}} = 1,23 m^2$$

Sabendo a seção transversal da torre é possível encontrar seu diâmetro (D_t) . É prudente sempre em plantas químicas utilizar um sobre dimensionamento de 20% no projeto de torres:

$$D_t = \sqrt{\frac{4 \cdot S_{min}}{\pi}} + 20\% = 1,5 m$$

Para os demais cálculos utiliza-se o diâmetro em unidade de pés, $D_t = 4,93 ft$, o qual sugere-se um nível inferior de líquido (*LLL*) de 6 polegadas. Pela operação da coluna de separação estar alimentando uma bomba ou tanque seguinte no processo, os tempos de residência de *Holdup time* e de S*urge time* são de 5 e 2 minutos, respectivamente¹⁵. Estes tempos garantem que em emergências a torre funcione com um acumulador, evitando maiores acidentes e determinam os níveis de líquido da torre. Sendo o nível normal de líquido (*NLL*) dado por:

$$NLL = LLL + \frac{Q_{vap} \cdot 5 \min/60}{S_{min}}$$

E o nível máximo de líquido (HLL) dado por:

$$HLL = NLL + \frac{Q_{vap} \cdot 2 \min/60}{S_{\min}}$$

A altura total do fundo se dá pela soma nos níveis estabelecidos com uma distância de 0,91 m até o último estágio:

$$H_{\text{último estágio}} = 0,91 + HLL$$

Por se tratar de uma operação com uma mistura de produtos de fácil manejo, é possível considerar uma separação entre os pratos comuns de 0,46 *m*. Considera-se ainda 0,91*m* de espaçamento extra no topo e no fundo da coluna, e também no prato de alimentação, então a altura da coluna (H_{torre}) é determinada por:

$$H_{torre} = (n^{\circ} pratos - 2) \cdot 0,46 + 3 \cdot 0,91$$

Figura 18. Torre de destilação T-1.

Para a estimação do ótimo econômico, como a torre geometricamente pode ser considerada como um vaso, as especificações são as mesmas utilizadas no item 4.4 do presente trabalho para o vaso pulmão. Logo a pressão relativa mínima de projeto (P_i) é 3,5 kg/cm^2 , a máxima tensão para o material (E) são 12 ksi, a eficiência da solda (S_S) é de 85% e uma sobre espessura por corrosão de 3*mm*. Utilizando a equação de espessura total (t):

$$t = \frac{P_i D_i}{2S_s E - 1, 2P_i} + 3mm$$

Então, calcula-se o peso da torre (W_{Torre}) por:

$$W_{Torre} = 240C_w D_n (H_{torre} + 0.8D_n)t$$

Sendo $C_w = 1,15$ para torres ou reatores e D_n o diâmetro nominal dado por:

$$D_n = D_t + t \times 10^{-3}$$

O valor obtido está na unidade de força (N), então deve-se dividir pela aceleração da gravidade obtendo o peso em quilogramas do equipamento.

Agora estima-se o custo unitário de cada prato por:

$$C_{prato} = n^{\circ} \, pratos \cdot (a + bS^n)$$

Onde para os pratos a = 110, b = 380 e n = 1,8. E finalmente, o custo do da torre (C_T) a partir da seguinte fórmula:

$$C_T = a + bS^n$$

Em que para uma torre vertical de aço inoxidável a = 17.400, b = 79 e n = 0,85. O custo de instalação em geral é de 4 vezes o custo de compra do equipamento, e considerando a uma taxa de desconto de 15% em um horizonte temporal da unidade de 10 anos com ACCR, do inglês *Annual Capital Charge Ratio* é de 0,199¹⁵.

Estes cálculos foram realizados para diversos números de pratos utilizando o Software Aspen HYSYS para comparação dos resultados e otimização econômica, e os dados obtidos foram:

N° de	Diâmetro	Altura	Espessura	Peso	Custo Total
Pratos	(m)	(m)	(mm)	(kg)	(\$)
10	54,9	6,56	127,9	10.014.454,99	574.015.905,11
12	4,6	7,50	13,53	19.827,36	4.647.520,63
16	2,39	7,56	8,45	5.429,81	1.199.539,62
26	1,69	14,07	6,86	5.078,67	762.940,24
46	1,5	23,3	6,42	6.686,01	724.649,44
56	1,4	27,93	6,35	7.7725	747.481,84
76	1,5	37,13	6,32	9.988,29	724.779,04

Tabela 13. Otimização econômica para determinação do nº de pratos de Torre T-1.

Assim determinou-se que a melhor estrutura para a torre com as condições operacionais exigidas pela planta de separação de etilbenzeno e dietilbenzeno seria com 46 pratos.

•

Parâmetro característicos	Valor
Diâmetro da torre (m)	1,5
Altura da torre (m)	23,3
Espessura da torre (mm)	6,42
Número de pratos	46
Espaçamento entre pratos	0,46
Prato de alimentação	23
Nível máximo de líquido (mm)	351
Nível normal de líquido (mm)	294
Nível mínimo de líquido (mm)	152
Altura total do fundo (m)	1,26
Pressão de projeto (kPa)	33,7
Temperatura de projeto (°C)	260

Tabela 14. Parâmetro característicos da torre de 46 pratos.

Tabela 15. Otimização econômica da torre T-1 com 46 pratos.

Otimização econômica	Valor
Peso (kg)	6.686
Custo do equipamento (\$)	199.762,62
Custo total (equipamento + instalação) (\$)	799.050,47
Custo anualizado 15% por 10 anos (\$)	266.083,81

A partir dos custos calculados para cada um dos equipamentos é possível estimar o custo total da planta (Tabela 15).

Equipamento	Custo (\$)	Custo Anualizado (\$)
Torre	799.050,47	266.083,81
Vaso Pulmão	225.176,23	74.983,68
Condensador	119.513,95	39.798,15
Reboiler	143.448,15	47.768,23
Bomba de Refluxo	47.147,81	15.700,22
Sub Total (equipamentos)		444.334,09
Vapor	261.732,30	261.732,30
Refrigeração	18.079,69	18.079,69
Eletricidade	503,35	503,35
Sub Total (operação)		280.315,35
TOTAL		724.649,4357

Tabela 16. Custos de cada equipamento.

4.6. Listagem de indicadores

Os indicadores são instrumentos de suma importância em uma planta industrial, tais instrumentos servem para medição das variáveis de processo mostrando para o operador seu valor numérico, tanto no próprio equipamento quanto na sala de controle. Na produção do etilbenzeno foram escolhidos os principais indicadores para o processo, sendo eles: temperatura, pressão, nível e vazão. Com isso, foram listados todos os indicadores necessários para a planta conforme a Tabela 17.

INSTRUM	IENTOS DE VAZÃO	INSTRUMENTOS DE NÍVEL			
Identificação	Localização (núm. da	Identificação	Localização (do		
Iucintificação	tubulação)	Identificação	vaso)		
FI	01,12,16	LI	V-1		
FC	03	LI	T-1		
FIC	18	LIC	05,17		
FCV	03,06,17	-	-		
FT	03,18	-	-		
INSTRUM	ENTOS DE DDESSÃO	INSTRUMENTOS DE			
	ENIOS DE FRESSÃO	TEMPERATURA			
Identificação	Localização (núm. da	Identificação	Localização (núm. da		
Identificação	tubulação ou vaso)	Identificação	tubulação ou vaso)		
PI	01,02,12,16,19	TI	Todos os trocadores		
PI Todas as bombas		TI	01,02,09,12,14,16,19		
DIG	1.5				
PIC	15	-	-		
PT	15	-	-		

Tabela 17. Listagem de indicadores.

4.7. Listagem de controladores

Os controladores são instrumentos que possuem a finalidade de garantir que as variáveis do processo permaneçam no valor de interesse, podendo esses garantirem a otimização do processo produtivo por meio da eficiência na qualidade do produto e no seu rendimento. Esses instrumentos podem operar de forma automática ou manual, prezando pela segurança da planta, dado que os mesmos regulam as principais variáveis do processo. Logo, foram listados por meio da Tabela 18 todos os controladores do sistema.

Tabela 18. Listagem de controladores.

Identificação	Localização (núm. da tubulação ou vaso)
PIC	15
FIC	18
FC	03
LCV	06
FCV	17,03,06
LIC	05,17

4.8. Listagem de alarmes

Os sistemas de alarme, são sinais sonoros e luminosos que tem como objetivo de garantir a segurança da planta, quando alguma variável de processo como pressão, temperatura, nível e vazão não estão nos parâmetros pré-estabelecidos, o valor pode estar muito baixo ou alto do valor de referência (set point). Esses sistemas não tem ação imediata na ação de controle, logo tem a necessidade de um operador que identifique o sinal dos alarmes no painel de controle e tome a decisão para a ação de controle que será determinada. Abaixo segue a lista de alarmes empregados

Identificação	Localização (número do instrumento ou laço de controle com alarme)	Descrição
РАНН	15	Pressão muito alta
PAH	15	Pressão alta
FALL	03	fluxo muito alto
FAL	03	Fluxo alto
LAH	17,05	Nível alto
LAL	17,05	Nível baixo

Tabela 19. Listagem de alarmes.

4.9. Listagem de intertravamentos

Os sistemas de intertravamentos funcionam como medida de segurança. É um dispositivo que impede de se fazer manobra inadequada ou ajusta o sistema para um estado seguro se for feita qualquer manobra que não foi premeditada. São utilizados em último caso, quando as demais medidas falham ou se mostram ineficientes, esses dispositivos atuam de forma a parar o processo de produção da planta. São acionados de

forma digital a partir de alarmes de segundo nível. A tabela abaixo mostra a lista de intertravamentos:

Identificação	Localização (número do instrumento ou laço de controle com intertravamento)	Ação sobre
SI-1	15-PSHH	Para o aporte de pressão da torre
SI-1	03-FSLL	Para o aporte de fluxo no condensador
SI-1	Laço de válvula 18	Para o aporte de vapor a caldeira

Tabela 20. Listagem o	de intertravamentos.
-----------------------	----------------------

4.10. Listagem de válvulas de segurança

As válvulas de segurança são instrumentos que atuam automaticamente como à prova de falhas, garantindo a segurança operacional da planta. Tais válvulas funcionam quando a planta chega à valores críticos, como o aumento excessivo de pressão, temperatura, volume ou fogo externo. Dessa forma, foram listados conforme a Tabela 21 as válvulas de segurança.

Identificação	Localização (número do vaso)			
PSVT	14			
PSU-11	11			

4.11. Diagrama mecânico de processo

A imagem abaixo descreve o diagrama mecânico de processo (P&ID):

Figura 19. Diagrama mecânico (P&ID) da torre para destilação de EB (T-1).

EQUIPIMAMENTO	T-1	EQUIPAMENTO	V-1	EQUIPAMENTO		E1	E	2	E	3	EQUIPAM	IENTO	P1	P2	P3
Descriação	Separador	descrição	Pulmão	Descrição	Trocad	or de calor	conde	sador	cald	eira	Descrição		Bomba 1	Bomba 2	Bomba 3
P topo(kpa)	110	pressão(kPa)	344	tipo	casco	tubo	casco	tubo	casco	tubo	vazão op(m3/h)	8,613	1,71649	10,9642
P fundo(kpa)	140	Temperatura(^o C)	260	P entrada/ saída(kPa	90/25	1900/1835				-	P impulsã	o(kPa)	215,048	1900	1900
T topo(ºC)	139	Altura(m)	1,5	T entrada/ saída (ºC)	145,4/14	192,3/147,3	30/45	139/138,9	183,8/191,3	212/212	P aspiraçã	io(Kpa)	37,5331	40	10
Altura(M)	23,3	comprimento	6,3	Área (m2)	17,4738	0,36482939	17,3347901	0,36482939	57,1510407	0,36482939	Potência(kW)	1,04865	2,18975	14,2128
Diâmetro(m)	1,5	HLL (m)	1,2								NPSH(m)		3,2939	3,2939	3,3
Nº pratos	46	LLL (m)	0,3												
		NLL (m)	0,75												

4.12. Avaliação de impacto ambiental

A planta apresentada neste trabalho trabalha com uma corrente recebida composta por benzeno, etilbenzeno e dietilbenzeno, que alimenta a torre de destilação. O etilbenzeno é um dos componentes do grupo BTEX (sigla para benzeno, tolueno, etilbenzeno e xileno) que são compostos orgânicos voláteis (COVs) presentes em muitos produtos químicos, como gasolina, óleo diesel, solventes e produtos de petróleo. A exposição a estes compostos gera efeitos negativos na saúde humana e no meio ambiente, incluindo a contaminação do solo, da água e do ar.

Neste processo eventuais falhas podem ocasionar vazamentos, e sabendo que o etilbenzeno é um COV que contribui ainda com a formação de ozônio troposférico – poluente secundário resultante de reações fotoquímicas com dióxido de nitrogênio, que possui um potencial maior que o CO₂ no agravamento do efeito estufa – é de extrema importância a avaliação e controle das emissões causadas pela instalação, apesar de hoje não existirem limites legais para concentração de BTEX no ar. 28,29 .

As emissões de etilbenzeno podem ocorrer durante a produção industrial de diferentes derivados, seja a partir dos reatores, da destilação e/ou da cristalização. Tanto os produtos finais, quanto as matérias primas podem ser emitidas a partir do armazenamento inadequado, das perdas de carregamento e manuseio e ainda a partir das chamadas emissões fugitivas, que resultam de vazamentos dos equipamentos das plantas. Em geral, o etilbenzeno é emitido principalmente para a atmosfera e em menor quantidade para a água e para a terra³⁰.

Segundo a Companhia Ambiental do Estado de São Paulo (CETESB), a principal via de exposição humana ao etilbenzeno é a inalação, sendo também possível a contaminação por contato dérmico e ingestão. A curto prazo, a exposição pode causar

irritação nos olhos, no nariz e na via aérea superior, podendo ainda gerar vermelhidão e bolhas na pele, fadiga, tontura e perda de coordenação. Em relação ao contato dérmico, o etilbenzeno pode causar ressecamento e dermatite. Além disso, a Agência Internacional de Pesquisa em Câncer (IARC) classifica esse composto como potencial cancerígeno humano (Grupo 2B) a partir de estudos que mostraram maior incidência de adenomas em animais expostos por vias aéreas³¹.

Devido a isso, as plantas produtoras de etilbenzeno devem implementar medidas que minimizem os riscos causados pela liberação destes insumos seja por falhas ou como produtos residuais. Medidas para controlar as emissões de etilbenzeno na atmosfera, incluindo o uso de tecnologias de captura de gases e o monitoramento contínuo das emissões estão cada vez mais sendo estudadas. Kieling, A. G. em seu trabalho relata grande potencial do uso de cinzas de casca de arroz e carvão ativado como adsorvente alternativo de BTEX com valores de remoção destes gases da atmosfera variando entre 78,8% e 100% ³².

Outra medida eficaz para o controle de emissões é a incineração de resíduos, que é uma maneira eficaz de destruir gases poluentes, incluindo o etilbenzeno, ainda mais tenho em consideração que seu potencial de interferência no efeito estufa é maior que o do CO₂. O processo de queima ocorre em uma câmara de combustão especialmente projetada para controlar as emissões de gases poluentes. Além disso o armazenamento seguro destes compostos deve ser um fator de atenção, principalmente por se tratar de um gás altamente inflamável.

Considerando o produto de fundo da torre de destilação de dietilbenzeno, ou um possível vazamento de etilbenzeno em fase líquida, o trabalho de Gimenez, N. L. demonstrou grande efetividade na extração de compostos voláteis por meio da técnica de microextração em fase sólida por meio da fibra SPME, que consiste basicamente em dois estágios no qual a fibra é mergulhada diretamente no resíduo em fase aquosa atuando como um adsorvente, e o segundo estágio em que se aplica um processo de dessorção térmica dos analitos retidos. O estudo apresenta que a alta seletividade da fibra é capaz de detectar compostos do grupo BTEX com concentrações de 1 μ g/L, revelando alta eficiência no tratamento de efluentes³³.

A maneira mais segura de evitar que produtos indesejáveis entrem em contato com o ambiente é pelo monitoramento contínuo, a fim de garantir que as tecnologias de controle de emissões estejam funcionando corretamente e para detectar qualquer aumento nas emissões, utilizando sensores e válvulas de segurança.

5. CONCLUSÕES

Em resumo, ao longo deste trabalho, foi possível encontrar uma configuração ideal para a torre de destilação para produção de etilbenzeno com pureza de 99,8 mol% com uma capacidade 80.000 toneladas anuais. Para isto realizou-se um balanço de massa e energia seguindo o princípio geral de conservação em que a soma do resíduo e do destilado devem ser iguais à soma da carga inicial da torre.

Em seguida foi apresentado o projeto de cada um dos equipamentos que compõem a instalação de produção de etilbenzeno. Para projetar a torre de destilação T-1 foram levados em conta dois pontos principais: a avaliação de viabilidade econômica e a relação com a taxa de refluxo. A partir desta análise determinou-se que o ótimo para este equipamento seria a disposição com 46 pratos, obtendo assim uma altura de 23,3 metros e um diâmetro de 1,5 metros, e seu custo anualizado considerando a uma taxa de desconto de 15% em um horizonte temporal da unidade de 10 anos foi de \$266.083,81. O vaso pulmão da torre também foi dimensionado seguindo o ótimo econômico e apresentou um comprimento de 6,3 metros com altura de 1,5 metros, custando \$74.983,68.

Igualmente, o impulsionamento de fluidos foi otimizado, neste projeto foram consideradas 3 bombas centrífugas dimensionadas por potência consumida e custo anualizado considerando o consumo de eletricidade. Obtiveram-se os seguintes resultados para cada uma das bombas, respectivamente: potência requerida de 1,049 kW, 2,190 kW e 14,213 kW, e custo total anualizado de \$16.203,57, \$14.882,75 e \$30.634,87.

Ainda, os trocadores de calor que desempenham papel fundamental no processo de destilação foram dimensionados pelo número de tubos e seu custo anualizado. O trocador de calor E-1 tem função de pré-aquecimento da corrente que entra na torre e atingiu o ótimo econômico com 48 tubos e um custo de \$39.822,24. O trocador E-2 tem função de condensar a corrente que sai pelo topo da coluna, e apresentou também 48 tubos e custo de \$57.877,84. Por fim, o trocador E-3 que é o refervedor da torre, possui 157 tubos e custo de \$309.500,53.

Analisadas as dimensões do projeto foi desenvolvido um fluxograma de processos (PFD) onde são indicados os sistemas de instrumentação, controle, e os elementos de segurança da planta. Descreveu-se ainda o funcionamento, a disposição e as principais interconexões dos equipamentos por meio de um diagrama P&ID da unidade T-1 composta pela torre de destilação e os demais equipamentos anteriormente otimizados.

Finalmente, demonstrou-se a importância de uma avaliação do impacto ambiental de uma instalação como esta, em que os produtos gerados possuem alto potencial de impactos negativos na saúde humana e no meio ambiente, incluindo a contaminação do solo, da água e do ar, e foram apresentadas algumas possibilidades para a destinação e tratamento dos principais efluentes gerados.

Para futuros trabalhos ou execução prática deste projeto, sugerem-se atualizações dos preços cotados, como de equipamentos, eletricidade e instalação, devido à alta volatilidade, pois todo o escopo do projeto foi pensado levando em consideração a análise financeira considerando uma taxa de desconto de 15% ao ano, o que quando colocado em prática pode diferir bastante.

6. **BIBLIOGRAFIA**

- Gerzeliev, I. M.; Khadzhiev, S. N.; Sakharova, I. E. Ethylbenzene Synthesis and Benzene Transalkylation with Diethylbenzenes on Zeolite Catalysts. *Petroleum Chemistry* 2011, 51 (1), 39–48. https://doi.org/10.1134/S0965544111010038.
- (2) Market Growth Reports. Ethylbenzene Market 2023 New Technological Trends & Statistical data by Top Players 2028 [NEW REPORT] -MarketWatch. https://www.marketwatch.com/press-release/ethylbenzenemarket-2023-new-technological-trends-statistical-data-by-top-players-2028-new-report-2023-01-19 (accessed 2023-01-21).
- (3) Junqueira, P. G.; Caxiano, I. N.; Mangili, P. v.; Prata, D. M. Environ-Economic Analysis of Conceptual Intensification Alternatives Applied to the Ethylbenzene Production. *Comput Chem Eng* **2020**, *136*. https://doi.org/10.1016/j.compchemeng.2020.106783.
- (4) Hussain, A.; Minh, L. Q.; Lee, M. Intensification of the Ethylbenzene Production Process Using a Column Configured with a Side Reactor. *Chemical Engineering and Processing: Process Intensification* 2017, 122, 204–212. https://doi.org/10.1016/j.cep.2017.10.003.
- (5) CETESB. Avaliação de Benzeno; Tolueno; o-Xileno; m, p-Xileno e Etilbenzeno Na Atmosfera Da Estação de Monitoramento de Pinheiros; São Paulo, 2016.
- (6) Piceli, P. C.; Lisboa, H. de M. Quantification of Benzene, Toluene, Ethylbenzene and Xylenes in the Air of Indoor Environments. *Engenharia Sanitaria e Ambiental* 2018, 23 (3), 527–534. https://doi.org/10.1590/s1413-41522018119310.
- (7) Fernández, L. *Ethylbenzene annual production capacity globally 2023 / Statista*. https://www.statista.com/statistics/1063696/global-ethylbenzene-production-capacity/ (accessed 2023-01-21).

- (8) Richard Turton; Richard C. Bailie; Wallace B. Whiting; Joseph A. Shaeiwitz. Analysis, Synthesis, and Design of Chemical Processes Third Edition; 2009.
- (9) Lancia, A.; Musmarra, D.; Prisciandaro, M. Kirk-Othmer Encyclopedia of Chemical Technology, Fifth Edition; 2012.
- (10) Oliveira, A.; Rangel, M.; Fierro, J.; Reyes, P.; Oportus, M. *Efeito Do Cromo* Nas Propriedades Catalíticas Da MCM-41; 2005; Vol. 28.
- (11) Tsai, T. C.; Liu, S. bin; Wang, I. Disproportionation and Transalkylation of Alkylbenzenes over Zeolite Catalysts. *Appl Catal A Gen* 1999, *181* (2), 355– 398. https://doi.org/10.1016/S0926-860X(98)00396-2.
- (12) Luyben, W. L. Design and Control of the Ethyl Benzene Process. *AIChE Journal* 2011, 57 (3), 655–670. https://doi.org/10.1002/aic.12289.
- (13) Gist, G. L.; Burg, J. R. Benzene&Mdash; A Review Of The Literature From A Health Effects Perspective, 1997.
- (14) Galbraith, D.; Gross, S. A.; Paustenbach, D. Benzene and Human Health: A Historical Review and Appraisal of Associations with Various Diseases. *Critical Reviews in Toxicology*. November 2010, pp 1–46. https://doi.org/10.3109/10408444.2010.508162.
- (15) Gavin Towler; Ray Sinnoott. Chemical Engineering Desing; 2008.
- (16) (27) Destilação parte 4: linhas de operação YouTube. https://www.youtube.com/watch?v=JNzFIMPG6lo (accessed 2023-02-12).
- (17) McCabe, W.L., Smith, J.C. and Harriott, P. (1993) Unit Operations of Chemical Engineering. McGraw-Hill, New York. - References - Scientific Research Publishing.
 https://www.scirp.org/(S(351jmbntvnsjt1aadkozje))/reference/referencespapers.a spx?referenceid=1517539 (accessed 2023-02-12).
- (18) Atkins, P. W. (Peter W.; de Paula, J.; Keeler, J. Atkins' Physical Chemistry; 2017.

- (19) Roitman, V. Curso De Formação De Operadores De Refinaria Operações Unitárias, Equipe Petrobras.; Curitiba, 2002.
- (20) Confederação Nacional da Indústria; IEL Núcleo Central; ELETROBRÁS –
 Centrais Elétricas Brasileiras S.A. *Bombas: Guia Básico*; 2009.
- (21) Cremasco, M. A. Operações Unitárias Em Sistemas Particulados E Fluidomecânicos, 2° ed.; Editora Edgard Blücher Ltda.: São Paulo: Blucher, 2014.
- (22) Bomba Centrífuga: quais pontos de análise de vibração TRACTIAN. https://tractian.com/blog/bomba-centrifuga (accessed 2023-02-03).
- (23) Gomide, R. Operações Unitárias Volume 2 Operações Com Fluidos. ABDR
 1997.
- (24) Schlünder, E. U.; International Centre for Heat and Mass Transfer. *Heat Exchanger Design Handbook*; Hemisphere, **1983.**
- (25) Gomide, R. Operações Unitárias Vol. 4: Operações de Transferência de Massa;
 1988; Vol. 4.
- (26) Tourton, R.; Bailie, R. C.; Whiting, W. B.; Shaeiwitz, J. A. Analysis, Synthesis, and Design of Chemical Processes Third Edition; **2009**.
- (27) Çengel, Y. A.; Ghajar, A. J. *Transferência de Calor e Massa: Uma Abordagem Prática*; adaptado por Mehmet Kanoglu; tradução: Fátima A. M. Lino; revisão técnica: Kamal A. R. Ismail.: Porto Alegre, **2012**; Vol. 4^a ed.
- (28) Rodrigues, G. S.; Martins, R. A. Ambiental Potential Tropospheric Ozone Effects on Crops and Environmental Biomonitoring. *Mudanças climáticas globais e a agropecuária brasileira*. 2001, *Cap. 6*, 143–165.
- (29) CETESB. Avaliação de Benzeno; Tolueno; o-Xileno; m, p-Xileno e Etilbenzeno Na Atmosfera Da Estação de Monitoramento de Pinheiros; São Paulo, 2016.
- (30) Fishbein, L. An Overview Of Environmental And Toxicological Aspects Of Aromatic Hydrocarbons Iv. Ethylbenzene; **1985**; Vol. 44.

- (31) CETESB. Ficha de Informação Toxicológica. https://cetesb.sp.gov.br/laboratorios/wpcontent/uploads/sites/24/2022/02/Etilbenzeno.pdf (accessed 2023-02-07).
- (32) Kieling, A. G. Adsorção De BTEX-Benzeno, Tolueno, Etilbenzeno E Xileno-Em Cinza De Casca De Arroz E Carvão Ativado. Universidade Federal Do Rio Grande Do Sul –Ufrgsescola De Engenharia - Programa De Pós-Graduação Em Engenharia De Minas, Metalúrgica E De Materiais 2016.
- (33) Luiz Gimenez, N.; Lichtig, J. Avaliação Do Sistema de Tratamento de Efluentes Industriais Através Da Determinação Do Grupo BTEX, via Cromatografia a Gás/SPME (Micro Extração Em Fase Sólida). *Faculdade de Saúde Públida da Universidade de São Paulo*. 2021. https://doi.org/10.11606/T.6.2004.TDE-11022021-000629.

7. ANEXOS

Tabela 13.2 – Chemical Engineering Design

 Table 13.2.
 Typical Maximum Allowable Stresses for Plates Under ASME BPV Code

 Sec. VIII D.1 (The Appropriate Material Standards Should be Consulted for Particular
 Grades and Plate Thicknesses)

		Min Tensile	Min Yield	Maximum	Maximum Allowable Stress at Temperature °F (ksi = 1000 psi)					
Material	Grade	Strength (ksi)	Strength (ksi)	lemperature (°F)	100	300	500	700	900	
Carbon steel	A285 Gr A	45	24	900	12.9	12.9	12.9	11.5	5.9	
Killed carbon steel	A515 Gr 60	60	32	1000	17.1	17.1	17.1	14.3	5.9	
Low alloy steel 1 ¹ / ₄ Cr, ¹ / ₂ Mo, Si	A387 Gr 22	60	30	1200	17.1	16.6	16.6	16.6	13.6	
Stainless steel 13 Cr	410	65	30	1200	18.6	17.8	17.2	16.2	12.3	
Stainless steel 18 Cr, 8 Ni	304	75	30	1500	20.0	15.0	12.9	11.7	10.8	
Stainless steel 18 Cr, 10 Ni, Cb	347	75	30	1500	20.0	17.1	15.0	13.8	13.4	
Stainless steel 18 Cr, 10 Ni, Ti	321	75	30	1500	20.0	16.5	14.3	13.0	12.3	
Stainless steel 16 Cr, 12 Ni, 2 Mo	316	75	30	1500	20.0	15.6	13.3	12.1	11.5	

Note: 1. The stress values for type 304 stainless steel are not the same as those given for stainless steel 304L in Table 7.8 of this book. 2. 1 ksi = 1000 psi = 6.8948 N/mm²

Tabela 6.11 – Chemical Engineering Design

Table 6.11 Values of annual capital charge ratio (ACCR) for different interest rates						
Interest rate, <i>i</i>	ACCR: 10 year life	ACCR: 20 year life				
0.1	0.163	0.117				
0.12	0.177	0.134				
0.15	0.199	0.16				
0.2	0.239	0.205				
0.25	0.280	0.253				
0.3	0.323	0.302				

Tabela 7.2 – Chemical Engineering Design

Table 7.2 Purchased Equipment Cost for Common Plant Equipment-Cont'd								
Equipment	Units for Size, S	Slower	Supper	a	b	n	Note	
Vertical, 304 ss	shell mass, kg	120	250,000	17,400	79	0.85	4	
Horizontal, 304 ss	shell mass, kg	120	50,000	12,800	73	0.85	4	

(e) aspentech Bedi USA	Compony Name Nat Available	Case Name:	simulacao46pratos_TCC.hsc
	Bedford, MA USA	Unit Set:	SI
		Date/Time:	Mon Feb 13 19:26:44 2023

Material Stream: 1

1			Case Name:	simulacao46pratos_TCC.hsc				
2	(aspentech Bedford, M	Name Not Available A	Unit Set:	SI				
4 5	USA		Date/Time:	Mon Feb 13 19:26:44	2023			
6	Material Otro	4			Fluid Package:	Basis-1		
7 8	Material Stre	am: 1			Property Package:	Peng-Robinson		
9			CONDITIONS					
11		Overall	Liquid Phase					
12	Vapour / Phase Fraction	0.0000	1.0000					
13	Temperature: (C)	145.4 *	145.4					
14	Pressure: (kPa)	190.0 *	190.0					
15	Molar Flow (kgmole/h)	101.2 *	101.2					
16	Mass Flow (kg/h)	1.102e+004	1.102e+004					
17	Std Ideal Liq Vol Flow (m3/h)	12.68	12.68		_			
18	Molar Enthalpy (kJ/kgmole)	7432	7432					
19	Molar Entropy (kJ/kgmole-C)	-3.651	-3.651					
20	Heat Flow (KJ/h)	7.5180+005	7.518e+005					
22		12.05	12.05					
23			PROPERTIES					
24		Overall	Liquid Phase					
25	Molecular Weight	109.0	109.0					
26	Molar Density (kgmole/m3)	6.894	6.894					
27	Mass Density (kg/m3)	751.4	751.4					
28	Act. Volume Flow (m3/h)	14.67	14.67					
29	Mass Entrapy (KJ/Kg)	68.19	2 250 2 002					
30	Heat Capacity (k //kgmole_C)	-3.3500-002	-3.3500-002					
32	Mass Heat Capacity (k.//kg-C)	233.3	233.5					
33	LHV Molar Basis (Std) (kJ/kgmole)							
34	HHV Molar Basis (Std) (kJ/kgmole)							
35	HHV Mass Basis (Std) (kJ/kg)							
36	CO2 Loading							
37	CO2 Apparent Mole Conc. (kgmole/m3)							
38	CO2 Apparent Wt. Conc. (kgmol/kg)							
39	LHV Mass Basis (Std) (kJ/kg)							
40	Phase Fraction [Vol. Basis]	0.0000	1.000					
41	Phase Fraction [Mass Basis]	0.0000	1.000					
42	Mass Exergy (k l/kg)	0.0000	1.000					
44	Partial Pressure of CO2 (kPa)	0,000						
45	Cost Based on Flow (Cost/s)	0.0000	0.0000					
46	Act. Gas Flow (ACT m3/h)							
47	Avg. Liq. Density (kgmole/m3)	7.977	7.977					
48	Specific Heat (kJ/kgmole-C)	233.3	233.3					
49	Std. Gas Flow (STD_m3/h)	2392	2392					
50	Std. Ideal Liq. Mass Density (kg/m3)	869.4	869.4					
51	Act. Liq. Flow (m3/s)	4.075e-003	4.075e-003					
52		7.919e-003	7.919e-003					
54	User Property	10.41	10.41					
55	Partial Pressure of H2S (kPa)	0.000						
56	Cp/(Cp - R)	1.037	1.037					
57	Cp/Cv	1.272	1.272					
58	ldeal Gas Cp/Cv	1.047	1.047					
59	Ideal Gas Cp (kJ/kgmole-C)	183.6	183.6					
60	Mass Ideal Gas Cp (kJ/kg-C)	1.684	1.684					
61	Heat of Vap. (kJ/kgmole)	3.576e+004						
62	Kinematic Viscosity (cSt)	0.2757	0.2757					
63	Liq. Mass Density (Std. Cond) (kg/m3)	871.6	871.6					
64 65	Liquid Fraction (Sta. Cond) (m3/h)	12.65	12.65					
60	Molar Volume (m3/kamolo)	0.1450	0.1450					
67	Mass Heat of Van (k.l/kg)	328.1	0.1430		_			
68	Phase Fraction [Molar Basis]	0.0000	1.0000					
69	Aspen Technology Inc.	A	spen HYSYS Versio	on 11		Page 1 of 18		

Licensed to: Company Name Not Available

1					Case Nam	ne: si	mulacao46pratos_T	CC.hs	SC			
2 3	Company Name Not Availab Bedford, MA			Available	Unit Set:	Unit Set: SI						
4		USA			Date/Time	: M	lon Feb 13 19:26:44	2023				
6								Fluid	Package:	Basis-1		
7 8	Mater	ial Strea	m:	1 (conti	nued)			Prop	erty Package:	Peng-Robir	ison	
9									, ,	0		
10			0	verell								
12	Surface Tension	(dyne/cm)	0	16.03		16.03						
13	Thermal Conductivity	(W/m-K)		0.1105	0	.1105						
14	Bubble Point Pressure	(kPa)		120.4								
15	Viscosity	(cP)		0.2071	0	.2071						
16	Cv (Semi-Ideal) (I	kJ/kgmole-C)		225.0	:	225.0						
17	Mass Cv (Semi-Ideal)	(kJ/kg-C)		2.064		2.064						
18	Cv (I	kJ/kgmole-C)		183.4		183.4						
19	Mass Cv	(kJ/kg-C)		1.683		1.683		_				
20	Cv (Ent. Method) (I	kJ/kgmole-C)		183.0		183.0		_				
21	Mass Cv (Ent. Method)	(kJ/kg-C)		1.679		1.679		_				
22	Cp/CV (Ent. Method)	(40-)		1.2/5		1.2/5						
23		(KPa)		2.545		2.545						
24	Lia Vol Flow - Sum/Std C	(KFa)		12 65		12 65		-		1		
26	Viscosity Index			-27.08		12.00						
27			I				1					
28												
29	9											
30					Overall P	nase			Vapour	Fraction	0.0000	
31 32	COMPONENTS	MOLAR FLOV (kgmole/h)	v r	MOLE FRACTIC	ON MASS (k	S FLOW g/h)	MASS FRACTIC	N	LIQUID VOLUME FLOW (m3/h)	LIQUI	D VOLUME ACTION	
33	Benzene	0.16	699 *	0.00	17 *	13.2734	* 0.00	12 *	0.0150	*	0.0012 *	
34	E-Benzene	90.63	804 *	0.89	60 * 9	9621.8671	* 0.872	28 *	11.0592	*	0.8721 *	
35	14-EBenzene	10.34	97 *	0.10	23 *	1389.1531	* 0.126	60 *	1.6064	*	0.1267 *	
36	Total	101.15	500	1.00	00 11	024.2936	1.000	00	12.6807		1.0000	
37 38					Liquid P	hase			Phase F	raction	1.000	
39 40	COMPONENTS	MOLAR FLOV (kgmole/h)	v r	MOLE FRACTIC	ON MASS (k	S FLOW .g/h)	MASS FRACTIC	N	LIQUID VOLUME FLOW (m3/h)	LIQUI	D VOLUME ACTION	
41	Benzene	0.16	99	0.00	17	13.2734	0.00	12	0.0150		0.0012	
42	E-Benzene	90.63	804	0.89	60 9	9621.8671	0.872	28	11.0592		0.8721	
43	14-EBenzene	10.34	97	0.10	23 -	1389.1531	0.126	60	1.6064		0.1267	
44	Total	101.15	500	1.00	00 11	024.2936	1.000	00	12.6807		1.0000	
45	Matar			•				Fluid	Package:	Basis-1		
46	water	ial Strea	m :	2				Prop	ertv Package:	Pena-Robir	ison	
48					CONDIT	IONS			, ,	0		
49 50			0	verall	Vanour Pha		Liquid Phase					
51	Vapour / Phase Fraction		0	0 0.320 *		.0320	0 9680					
52	Temperature:	(C)		147 0	0	147.0	147 0					
53	Pressure:	(kPa)		125.0 *		125.0	125.0					
54	Molar Flow	(kgmole/h)		101.2		3.237	97.91					
55	Mass Flow	(kg/h)		1.102e+004		346.1	1.068e+004					
56	Std Ideal Liq Vol Flow	(m3/h)		12.68	0	.3979	12.28					
57	Molar Enthalpy	(kJ/kgmole)		8925	4.697e	+004	7668					
58	Molar Entropy (I	kJ/kgmole-C)		-7.228e-002		73.90	-2.518					
59	Heat Flow	(kJ/h)		9.028e+005	1.520€	+005	7.508e+005					
60 61	Liq Vol Flow @Std Cond	(m3/h)		12.65 *	0	.3969	12.25					
ю1 62					PROPER	RTIES						
63			0	verall	Vapour Pha	ise	Liquid Phase					
64	Molecular Weight			109.0		106.9	109.1					
65	Molar Density	(kgmole/m3)		1.003	3.738	e-002	6.874			ļ		
66	Mass Density	(kg/m3)		109.3	:	3.997	749.7					

69 Aspen Technology Inc. Licensed to: Company Name Not Available

(m3/h)

(kJ/kg)

100.8

81.89

86.59

439.2

Aspen HYSYS Version 11

14.24

70.31

Act. Volume Flow

Mass Enthalpy

67

68

Material Stream: 2 (continued)

1			Case Name:	simulacao46pratos_T	CC.hsc					
3	(aspentech Bedford, M	Name Not Available IA	Unit Set:	Unit Set: SI						
4	USA		Date/Time:	Mon Feb 13 19:26:44	2023					
6		0 (, D		Fluid Package:	Basis-1				
7 8	Material Stre	am: 2 (conti	nuea)		Property Package:	Peng-Robinson				
9			PROPERTIES							
10		• "								
11		Overall	Vapour Phase	Liquid Phase						
12	Mass Entropy (kJ/kg-C)	-6.631e-004	0.6911	-2.308e-002						
13	Heat Capacity (kJ/kgmole-C)	232.6	181.5	234.3						
14	Mass Heat Capacity (kJ/kg-C)	2.134	1.698	2.148						
15	LHV Molar Basis (Std) (kJ/kgmole)									
16	HHV Molar Basis (Std) (kJ/kgmole)									
17	HHV Mass Basis (Std) (kJ/kg)									
18	CO2 Loading									
19	CO2 Apparent Mole Conc. (kgmole/m3)									
20	CO2 Apparent Wt. Conc. (kgmol/kg)									
21	LHV Mass Basis (Std) (kJ/kg)									
22	Phase Fraction [Vol. Basis]	3.138e-002	3.138e-002	0.9686						
23	Phase Fraction [Mass Basis]	3.139e-002	3.139e-002	0.9686						
24	Phase Fraction [Act. Vol. Basis]	0.8587	0.8587	0.1413						
25	Mass Exergy (kJ/kg)	41.72								
26	Partial Pressure of CO2 (kPa)	0.0000								
27	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000						
28	Act. Gas Flow (ACT_m3/n)	86.59	86.59							
29	Avg. Liq. Density (Kgmole/m3)	7.977	8.135	7.972						
30	Specific Heat (KJ/Kgmole-C)	232.0	181.5	234.3						
31	Std. Gas Flow (STD_III3/II)	2392	76.53	2315						
32	Std. Ideal Liq. Mass Density (kg/m3)	2 0560 002	869.9	3.0562.002						
33	Act. Liq. Flow (113/s)	3.9566-003		5.9566-003						
35	Z Factor Watson K	10.41	10.37	10.41						
36		10.41	10.57	10.41						
37	Partial Prossure of H2S (kPa)	0.0000								
38	Cn/(Cn - R)	1.037	1.048	1.037						
39		1.007	1.040	1.037						
40	Ideal Gas Cn/Cv	1.002	1.000	1.007						
41	Ideal Gas Cp (k.l/kgmole-C)	184.2	1.0.10	184.3						
42	Mass Ideal Gas Cp (k.I/kg-C)	1 690	1 683	1 690						
43	Heat of Vap. (kJ/kgmole)	3.686e+004								
44	Kinematic Viscosity (cSt)		2.066	0.2735						
45	Liq. Mass Density (Std. Cond) (kg/m3)	871.6	872.1	871.5						
46	Lig. Vol. Flow (Std. Cond) (m3/h)	12.65	0.3969	12.25						
47	Liquid Fraction	0.9680	0.0000	1.000						
48	Molar Volume (m3/kgmole)	0.9969	26.75	0.1455						
49	Mass Heat of Vap. (kJ/kg)	338.2								
50	Phase Fraction [Molar Basis]	0.0320	0.0320	0.9680						
51	Surface Tension (dyne/cm)	15.88		15.88						
52	Thermal Conductivity (W/m-K)		1.982e-002	0.1101						
53	Bubble Point Pressure (kPa)	125.3								
54	Viscosity (cP)		8.259e-003	0.2050						
55	Cv (Semi-Ideal) (kJ/kgmole-C)	224.2	173.2	225.9						
56	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.058	1.620	2.072						
57	Cv (kJ/kgmole-C)	232.2	171.9	225.9						
58	Mass Cv (kJ/kg-C)	2.130	1.607	2.072						
59	Cv (Ent. Method) (kJ/kgmole-C)									
60	Mass Cv (Ent. Method) (kJ/kg-C)									
61	Cp/Cv (Ent. Method)									
62	Reid VP at 37.8 C (kPa)	2.545	2.806	2.536						
63	True VP at 37.8 C (kPa)	2.545	2.806	2.536						
64	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	12.65	0.3969	12.25						
65	Viscosity Index	-27.56								
67										
68										

69 Aspen Technology Inc.

Licensed to: Company Name Not Available

(allb)	20	ne	an	te	20	h

Material Stream: 2 (continued)

1		<u> </u>		Case	Name: s	simulacao46pratos_TCC	.hsc	
2	(aspentech	Company N Bedford, M	Name Not Available A	Unit S	Set: S	51		
4		USA		Date/	Time: N	Mon Feb 13 19:26:44 20	23	
5 6						FI	uid Package: Ba	asis-1
7	Mate	rial Strea	am: 2 (conti	inued)	P	roporty Packago: Pr	and Pohinson
8 9						P	roperty Package. Pe	eng-Robinson
10				COMF	POSITION			
11 12				Overa	all Phase		Vapour F	raction 0.0320 *
13	COMPONENTS	MOLAR FLO	OW MOLE FRACTIO	N NC	ASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
14	_	(kgmole/h	ר)		(kg/h)		FLOW (m3/h)	FRACTION
15	Benzene	0.	1699 0.00	017	13.2734	0.0012	0.0150	0.0012
10	14-FRenzene	90.	3497 0.05	123	1389 1531	0.0728	1 6064	0.8721
18	Total	101.	1500 1.00	000	11024.2936	3 1.0000	12.6807	1.0000
19		-		Mana	Dhaaa			
20		1		vapo	ur Phase		Phase Fr	action 3.200e-002
21	COMPONENTS	MOLAR FLO	OW MOLE FRACTION	N NC	ASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME FRACTION
23	Benzene	0.	0202 0.00	062	1.5744	0.0045	0.0018	0.0045
24	E-Benzene	3.	1086 0.96	604	330.0226	0.9535	0.3793	0.9533
25	14-EBenzene	0.	1081 0.03	334	14.5083	3 0.0419	0.0168	0.0422
26	Total	3.	2368 1.00	000	346.1052	2 1.0000	0.3979	1.0000
27	Z Lig			Liqui	d Phase		Phase Fr	action 0.9680
20 29	COMPONENTS	MOLAR FLO	OW MOLE FRACTIO	N NC	ASS FLOW	MASS FRACTION	LIQUID VOLUME	LIQUID VOLUME
30		(kgmole/ł	ר)		(kg/h)		FLOW (m3/h)	FRACTION
31	Benzene	0.	1498 0.00)15	11.6990	0.0011	0.0133	0.0011
32	E-Benzene	87.	5218 0.89	939	9291.8445	0.8702	10.6799	0.8695
33	Tatal	10.	2416 0.10	000	13/4.0449	0.1287	1.5896	0.1294
35	Total	57.	1.00		10070.1004	F 1.0000	12.2020	1.0000
36	Mate	rial Strea	am: 10			FI	uid Package: Ba	asis-1
37 38						P	горепу Раскаде: Ре	eng-Robinson
39				CON	DITIONS			
40			Overall	Vapou	r Phase	Liquid Phase		
41	Vapour / Phase Fraction	(-)	0.0000		0.0000	1.0000		
42	Temperature:	(C)	191.3		191.3	191.3		
43	Pressure: Molar Flow	(KPa)	140.0	2	140.0	140.0		
45	Mass Flow	(kg/h)	1485	<u></u> 2	357e-003	1485		
46	Std Ideal Lig Vol Flow	(m3/h)	1.716	3	.878e-006	1.716		
47	Molar Enthalpy	(kJ/kgmole)	-2.327e+004	2.	128e+004	-2.327e+004		
48	Molar Entropy	(kJ/kgmole-C)	95.11		169.9	95.11		
49	Heat Flow	(kJ/h)	-2.618e+005		0.5551	-2.618e+005		
50	Liq Vol Flow @Std Cond	(m3/h)	1.715 *	3	.873e-006	1.715		
51 52				PRO	PERTIES			
53			Overall	Vapou	r Phase	Liquid Phase		
54	Molecular Weight		132.0	1.141	128.7	132.0		
55	Molar Density	(kgmole/m3)	5.383	3	.829e-002	5.384		
56	Mass Density	(kg/m3)	710.3		4.927	710.6		
57	Act. Volume Flow	(m3/h)	2.090	6	.813e-004	2.090		
58	Mass Enthalpy	(kJ/kg)	-176.3		165.4	-176.3		
59	Mass Entropy	(kJ/kg-C)	0.7207		1.321	0.7207		
60	Heat Capacity	(KJ/Kgmole-C)	312.6		247.7	312.6		
62	Wass Heat Capacity	(KJ/Kg-C)	2.369		1.925	2.369		
63	HHV Molar Basis (Std)	(k,l/kamole)						
64	HHV Mass Basis (Std)	(kJ/ka)						
65	CO2 Loading	1						
66	CO2 Apparent Mole Conc	. (kgmole/m3)						
67	CO2 Apparent Wt. Conc.	(kgmol/kg)						

Aspen Technology Inc. Licensed to: Company Name Not Available

(kJ/kg)

LHV Mass Basis (Std)

68 69

0						
()	as	pe	nt	e	C	1

Material Stream: 10 (continued)

1		0 N N		Case Name:	simulacao46pratos_T	CC.hsc	
3	(aspentech	Company Name N Bedford, MA	ot Available	Unit Set:	SI		
4 5		USA		Date/Time:	Mon Feb 13 19:26:44	2023	
6		1.04				Fluid Package:	Basis-1
7	Materi	al Stream:	10 (cor	itinued)		Property Package:	Peng-Robinson
9				PROPERTIES			
10							
11	Phase Freetier N/el Basial		Overall	Vapour Phase	Liquid Phase		
12	Phase Fraction [Vol. Basis]		2.2598-006	2.2598-006	1.000		
13	Phase Fraction [Mass Basis]	aial	2.2610-000	2.261e-006	0.0007		
14	Mass Everav		3.2590-004	3.259e-004	0.9997		
16	Partial Pressure of CO2	(kPa)	0,000				
17	Cost Based on Flow	(Cost/s)	0.0000	0.000	0.000		
18	Act Gas Flow	ACT m3/h)	6 813e-004	6.813e-004			
19	Ava, Lia, Density (k	(amole/m3)	6.555	6.727	6.555		
20	Specific Heat (kJ	/kamole-C)	312.6	247.7	312.6		
21	Std. Gas Flow (3	STD m3/h)	266.0	6.168e-004	266.0		
22	Std. Ideal Liq. Mass Density	(kg/m3)	865.1	865.6	865.1		
23	Act. Liq. Flow	(m3/s)	5.805e-004		5.805e-004		
24	Z Factor			0.9470	6.734e-003		
25	Watson K		10.78	10.73	10.78		
26	User Property						
27	Partial Pressure of H2S	(kPa)	0.0000				
28	Cp/(Cp - R)		1.027	1.035	1.027		
29	Cp/Cv		1.288	1.043	1.027		
30	Ideal Gas Cp/Cv		1.034	1.035	1.034		
31	Ideal Gas Cp (kJ	/kgmole-C)	253.0	245.6	253.0		
32	Mass Ideal Gas Cp	(kJ/kg-C)	1.917	1.908	1.917		
33	Heat of Vap.	kJ/kgmole)	4.037e+004				
34	Kinematic Viscosity	(cSt)		1.649	0.2945		
36	Liq. Wass Density (Std. Cond)	(m3/b)	1 715	3 8730 006	1 715		
37	Liquid Fraction	(113/11)	1.713	0.000	1.713		
38	Molar Volume (r	m3/kamole)	0 1858	26.12	0 1857		
39	Mass Heat of Vap.	(kJ/ka)	305.9				
40	Phase Fraction [Molar Basis]	(0.0000	0.0000	1.0000		
41	Surface Tension	(dyne/cm)	13.23		13.23		
42	Thermal Conductivity	(W/m-K)	0.1052	2.270e-002	0.1052		
43	Bubble Point Pressure	(kPa)	140.0				
44	Viscosity	(cP)	0.2093	8.123e-003	0.2093		
45	Cv (Semi-Ideal) (kJ	/kgmole-C)	304.3	239.4	304.3		
46	Mass Cv (Semi-Ideal)	(kJ/kg-C)	2.306	1.860	2.306		
47	Cv (kJ	/kgmole-C)	242.7	237.5	304.3		
48	Mass Cv	(kJ/kg-C)	1.839	1.846	2.306		
49	Cv (Ent. Method) (kJ	/kgmole-C)					
50	Mass Cv (Ent. Method)	(KJ/Kg-C)					
51							
53	True VP at 37.8 C	(kPa)	0.0429	0.0004 0.8336	0.5429		
54	Lig. Vol. Flow - Sum(Std. Co	nd) (m3/h)	1 715	3 873e-006	1 715	1	
55	Viscosity Index	, (-23.97				
56	,	I	_3.0.	0011200121011			
57				COMPOSITION			
58						Vancur	Fraction 0.0000
59				Overall Pliase		vapour	0.0000
60	COMPONENTS	MOLAR FLOW	MOLE FRACTI	ON MASS FLOW	MASS FRACTIC	N LIQUID VOLUME	LIQUID VOLUME
61	2	(Kgmole/h)		(kg/h)		FLOW (m3/h)	FRACTION
62	Benzene	0.0000	0.0				0.0000
64		0.9036	0.0	95.927	9 U.064	+0 0.1103	0.0042
65		11 2521	1.0	1300.990	.0 1.00)0 1 7165	
66	, stui	11.2321	1.0	1404.924	- 1.000	1.7100	1.0000
67							
68							
69	Aspen Technology Inc.		Α	spen HYSYS Version	n 11		Page 5 of 18

Licensed to: Company Name Not Available

(and a chanter	h	

Company Name Not Available Bedford, MA USA

Case Name: simulacao46pratos_TCC.hsc

SI

Unit Set:

Date/Time:

Mon Feb 13 19:26:44 2023

Fluid Package:

Material Stream: 10 (continued)

Basis-1

8			•				Pr	operty Package:	Per	ng-Robinson
9 10				С	OMPOSITION					
11 12				v	/apour Phase			Phase	e Fra	ction 2.318e-006
13 14	COMPONENTS	MOLAR FL (kgmole/	OW MOLE FRACT h)	ION	MASS FLOW (kg/h)		MASS FRACTION	LIQUID VOLUM FLOW (m3/h	1E)	LIQUID VOLUME FRACTION
15	Benzene	0.	.0000 0.00	000	0.000	0	0.0000	0.00	00	0.0000
16	F-Benzene	0	0000 0.1	973	0.000	5	0 1628	0.00	00	0 1620
17	14-FBenzene	0	0000 0.8	027	0.002	8	0.8372	0.00	00	0.8380
18	Total	0	0000 1.0	000	0.002	4	1 0000	0.00	00	1 0000
10	Total	0.	1.0	000	0.003	-	1.0000	0.00	00	1.0000
20					iquid Phase			Phase	e Fra	ction 1.000
21 22	COMPONENTS	MOLAR FL (kgmole/	OW MOLE FRACT h)	ION	MASS FLOW (kg/h)		MASS FRACTION	LIQUID VOLUM FLOW (m3/h	1E)	LIQUID VOLUME FRACTION
23	Benzene	0	.0000 0.0	000	0.000	0	0.0000	0.00	00	0.0000
24	E-Benzene	0.	.9036 0.0	803	95.927	4	0.0646	0.11	03	0.0642
25	14-EBenzene	10.	.3485 0.9	197	1388.993	3	0.9354	1.60	62	0.9358
26	Total	11.	.2520 1.0	000	1484.920	7	1.0000	1.71	65	1.0000
27					·		Fl	uid Package:	Bas	ais-1
28	Mater	ial Stre	am: 11					ala i aonago.	Dat	510-1
29							Pr	operty Package:	Per	ng-Robinson
30										
31				(CONDITIONS					
32			Overall		Liquid Phase					
33	Vapour / Phase Fraction		0.0000		1.0000					
34	Temperature:	(C)	192.3		192.3					
35	Pressure:	(kPa)	2000 *		2000					
36	Molar Flow	(kamole/h)	11 25		11 25					
37	Mass Flow	(kg/hb)	1/85		1/85					
38	Std Ideal Lig Vol Elow	(Kg/II) (m3/h)	1 716		1 716					
30	Molor Entholiny	(III3/II)	2 280 -+ 004		2 2800+004					
40	Molar Entrany (-2.2000+004		-2.2000+004				-	
40	Wolar Entropy (KJ/Kgmole-C)	95.33		95.33					
41	Heat Flow	(KJ/N)	-2.5666+005		-2.5666+005				_	
42	Liq vol Flow @Std Cond	(m3/n)	1./15 *		1.715					
43 44				F	PROPERTIES					
45			Overall		Liquid Phase					
46	Molecular Weight		132.0		132.0					
47	Molar Density	(kgmole/m3)	5.405		5.405					
48	Mass Density	(kg/m3)	713.3		713.3					
49	Act. Volume Flow	(m3/h)	2.082		2.082					
50	Mass Enthalpy	(kJ/kg)	-172.8		-172.8					
51	Mass Entropy	(kJ/kg-C)	0.7223		0.7223					
52	Heat Capacity (kJ/kgmole-C)	311.5		311.5					
53	Mass Heat Capacity	(kJ/kg-C)	2.360		2.360					
54	LHV Molar Basis (Std)	(kJ/kgmole)								
55	HHV Molar Basis (Std)	(kJ/kgmole)								
56	HHV Mass Basis (Std)	(kJ/kg)								
57	CO2 Loading	·								
58	CO2 Apparent Mole Conc.	(kgmole/m3)								
59	CO2 Apparent Wt. Conc.	(kgmol/ka)								
60	LHV Mass Basis (Std)	(kJ/ka)								
61	Phase Fraction IVol. Basis]	0 0000		1 000					
62	Phase Fraction Mass Bas	, isl	0.0000		1 000					
63	Phase Fraction [Act Vol E	.e.	0.0000		1 000					
64	Mass Everav	(k 1/ka)	7/ 70		1.000					
65	Dartial Processing of COO	(KJ/KY)	0.000							
66	Cost Recod on Flow	(RPa)	0.0000		0.0000				-+	
00	COSL DASEL UIT FIUW	(COSI/S)	0.0000		0.0000					

Aspen Technology Inc. Licensed to: Company Name Not Available

(ACT_m3/h)

(kgmole/m3)

6.555 Aspen HYSYS Version 11

6.555

67

68

69

Act. Gas Flow

Avg. Liq. Density

Page 6 of 18
(IIII) aspontoc	
A BOOMTOCI	

Material Stream: 11 (continued)

1				_	Case Name:	simulacao46pratos_	TCC.hsc		
3	(aspentech	Company f Bedford, M	Name Not Available A)	Unit Set:	SI			
4		USA			Date/Time:	Mon Feb 13 19:26:44	4 2023		
6	/						Fluid Package:	Ba	sis-1
7 8	Mater	ial Stre	am: 11 (contir	nued)		Property Package	: Pe	ng-Robinson
9									
10									
11	Specific Heat (1	(l/kamolo C)	Overall	15	Liquid Phase				
13	Std. Gas Flow	(STD m3/h)	26	60	266.0				
14	Std. Ideal Lig. Mass Densit	v (ka/m3)	86	5.1	865.1				
15	Act. Lig. Flow	(m3/s)	5.783e-	004	5.783e-004				
16	Z Factor		9.561e-	002	9.561e-002				
17	Watson K		10	.78	10.78				
18	User Property								
19	Partial Pressure of H2S	(kPa)	0.0	000					
20	Cp/(Cp - R)		1.1	027	1.027				
21	Cp/Cv		1.:	231	1.231				
22	Ideal Gas Cp/Cv		1.	034	1.034				
23	Ideal Gas Cp (I	kJ/kgmole-C)	25	3.6	253.6				
24	Mass Ideal Gas Cp	(kJ/kg-C)	1.	921	1.921				
25	Heat of Vap.	(KJ/Kgmole)	1.877e+	204	0 2022				
20	Lig Mass Density (Std. Co.	nd) (ka/m3)	0.2	58	865.8				
28	Lig. Vol. Flow (Std. Cond)	(m3/h)	1.	715	1.715				
29	Liquid Fraction	()	1.0	000	1.000				
30	Molar Volume	(m3/kgmole)	0.1	350	0.1850				
31	Mass Heat of Vap.	(kJ/kg)	14	2.3					
32	Phase Fraction [Molar Basi	s]	0.0	000	1.0000				
33	Surface Tension	(dyne/cm)	13	.14	13.14				
34	Thermal Conductivity	(W/m-K)	0.1	049	0.1049				
35	Bubble Point Pressure	(kPa)	14	3.5					
36	Viscosity	(CP)	0.2	084	0.2084				
38	V (Semi-Ideal) (F	(k l/kg C)	30	3.2	303.2				
39	Cy (Jenn-Ideal)	(KJ/Kg-C)	2	31	2.297				
40	Mass Cv	(kJ/ka-C)	1.1	918	1.918				
41	Cv (Ent. Method) (I	(J/kgmole-C)	25	1.7	251.7				
42	Mass Cv (Ent. Method)	(kJ/kg-C)	1.9	907	1.907				
43	Cp/Cv (Ent. Method)		1.:	238	1.238				
44	Reid VP at 37.8 C	(kPa)	0.54	429	0.5429				
45	True VP at 37.8 C	(kPa)	0.54	129	0.5429				
46	Liq. Vol. Flow - Sum(Std. C	cond) (m3/h)	1.	715	1.715				
47	Viscosity Index		-24	.31					
40 49				С	OMPOSITION				
50									
51				C	overall Phase		\	apour Fr	action 0.0000
52	COMPONENTS	MOLAR FL	OW MOLE F	RACTION	MASS FLOW	MASS FRACT		LUME	LIQUID VOLUME
53		(kgmole/	h)		(kg/h)		FLOW (1	n3/h)	FRACTION
54	Benzene	0.	0000	0.0000	0.000	0.0	000	0.0000	0.0000
55	E-Benzene	0.	9036	0.0803	95.927	79 0.0	646	0.1103	0.0642
56	14-EBenzene	10.	3485	0.9197	1388.996	0.9	354	1.6062	0.9358
57 58	i Ulai	11.	2321	1.0000	1484.924	iu 1.0	000	COI 1.1	1.0000
59				L	Liquid Phase		F	hase Fra	action 1.000
60	COMPONENTS	MOLAR FL	OW MOLE F	RACTION	MASS FLOW	MASS FRACT	ION LIQUID VC	LUME	LIQUID VOLUME
61		(kgmole/	h)		(kg/h)		FLOW (1	m3/h)	FRACTION
62	Benzene	0.	0000	0.0000	0.000	0.0	000	0.0000	0.0000
63	E-Benzene	0.	9036	0.0803	95.927	9 0.0	646	0.1103	0.0642
64	14-EBenzene	10.	3485	0.9197	1388.996	<u>61</u> 0.9	354	1.6062	0.9358
65 66	Iotal	11.	2521	1.0000	1484.924	iu 1.0	000	1./165	1.0000
00 67									
68									
69	Aspen Technology Inc.			Asper	n HYSYS Versio	n 11			Page 7 of 18

Material Stream: 12

1			Case Name:	simulacao46pratos_T	CC.hsc	
3	empany recompany	Name Not Available A	Unit Set:	SI		
4 5	USA		Date/Time:	Mon Feb 13 19:26:44	2023	
6					Fluid Package:	Basis-1
7 8	Material Stre	am: 12			Property Package:	Peng-Robinson
9			CONDITIONS			
10			CONDITIONS			
11 12	Vapour / Phase Fraction	Overall 0.0000	Liquid Phase			
13	Temperature: (C)	147.3	147.3			
14	Pressure: (kPa)	1935	1935			
15	Molar Flow (kgmole/h)	11.25	11.25			
16 17	Mass Flow (Kg/n) Std Ideal Lig Vol Flow (m3/b)	1485	1485			
18	Molar Enthalpy (kJ/kgmole)	-3.623e+004	-3.623e+004			
19	Molar Entropy (kJ/kgmole-C)	65.05	65.05			
20	Heat Flow (kJ/h)	-4.077e+005	-4.077e+005			
21 22	LIQ VOI Flow @Std Cond (m3/h)	1.715 *	1.715			
23			PROPERTIES			
24		Overall	Liquid Phase			
25	Molecular Weight	132.0	132.0			
26 27	Molar Density (kgmole/m3)	5.726	5.726			
28	Act. Volume Flow (m3/h)	1.965	1.965			
29	Mass Enthalpy (kJ/kg)	-274.5	-274.5			
30	Mass Entropy (kJ/kg-C)	0.4929	0.4929			
31 32	Heat Capacity (kJ/kgmole-C)	285.2	285.2			
33	LHV Molar Basis (Std) (kJ/kgmole)					
34	HHV Molar Basis (Std) (kJ/kgmole)					
35	HHV Mass Basis (Std) (kJ/kg)					
36 37	CO2 Loading					
38	CO2 Apparent Wt. Conc. (kgmol/kg)					
39	LHV Mass Basis (Std) (kJ/kg)					
40	Phase Fraction [Vol. Basis]	0.0000	1.000			
41	Phase Fraction [Mass Basis]	0.0000	1.000			
42	Mass Exergy (kJ/kg)	41.46				
44	Partial Pressure of CO2 (kPa)	0.0000				
45	Cost Based on Flow (Cost/s)	0.0000	0.0000			
46 47	Act. Gas Flow (ACT_m3/h)					
48	Specific Heat (kJ/kgmole-C)	285.2	285.2			
49	Std. Gas Flow (STD_m3/h)	266.0	266.0			
50	Std. Ideal Liq. Mass Density (kg/m3)	865.1	865.1			
51 52	Act. Llq. Flow (m3/s)	5.459e-004 9.666e-002	5.459e-004 9.666e-002			
53	Watson K	10.78	10.78			
54	User Property					
55	Partial Pressure of H2S (kPa)	0.0000				
56 57	Cp/(Cp - R)	1.030	1.030			
58	Ideal Gas Cp/Cv	1.037	1.037			
59	Ideal Gas Cp (kJ/kgmole-C)	231.0	231.0			
60	Mass Ideal Gas Cp (kJ/kg-C)	1.750	1.750			
61 62	Heat of Vap. (kJ/kgmole)	1.952e+004 0 3843	 0 3843			
63	Liq. Mass Density (Std. Cond) (kg/m3)	865.8	865.8			
64	Liq. Vol. Flow (Std. Cond) (m3/h)	1.715	1.715			
65	Liquid Fraction	1.000	1.000			
66 67	Mass Heat of Van	0.1747	0.1747			
68	Phase Fraction [Molar Basis]	0.0000	1.0000			
69	Aspen Technology Inc.	A	spen HYSYS Versio	on 11		Page 8 of 18

1		Company Name Net Available					mulacao46pratos_TC	C.hsc			
3	(aspentech	Company N Bedford, MA	ame N A	ot Available		Unit Set: SI					
4		USA				Date/Time: Mo	on Feb 13 19:26:44 2	4 2023			
6 7 8	Mater	rial Strea	am:	12 (con	tin	ued)		Fluid Package: Property Package:	Basis-1 Peng-Ro	bbinson	
9					Ρ	PROPERTIES					
11				Overall	L	_iquid Phase					
12	Surface Tension	(dyne/cm)		17.06		17.06					
13	Thermal Conductivity	(W/m-K)		0.1157		0.1157					
14	Bubble Point Pressure	(kPa)		45.52							
15	Viscosity	(cP)		0.2904		0.2904					
16	Cv (Semi-Ideal)	(kJ/kgmole-C)		276.9		276.9					
17	Mass Cv (Semi-Ideal)	(kJ/kq-C)		2.098		2.098					
18	Cv ((kJ/kgmole-C)		230.4		230.4					
19	Mass Cv	(kJ/kg-C)		1.746		1.746					
20	Cv (Ent. Method)	(kJ/kgmole-C)		234.9		234.9					
21	Mass Cv (Ent. Method)	(kJ/kg-C)		1.780		1.780					
22	Cp/Cv (Ent. Method)			1.214		1.214					
23	Reid VP at 37.8 C	(kPa)		0.5429		0.5429					
24	True VP at 37.8 C	(kPa)		0.5429		0.5429					
25	Liq. Vol. Flow - Sum(Std. (Cond) (m3/h)		1.715		1.715					
26	Viscosity Index			-14.85							
27 28					C	OMPOSITION					
29 30					0	verall Phase		Vap	Vapour Fraction		
31 32	COMPONENTS	MOLAR FLC (kgmole/h) W	MOLE FRACTIO	ЛС	MASS FLOW (kg/h)	MASS FRACTIO	N LIQUID VOLU FLOW (m3/	ME LIC	QUID VOLUME FRACTION	
33	Benzene	0.0	0000	0.00	000	0.0000	0.000	0 0.0	000	0.0000	
34	E-Benzene	0.9	9036	0.08	303	95.9279	0.064	6 0.1	103	0.0642	
35	14-EBenzene	10.3	3485	0.91	97	1388.9961	0.935	4 1.6	062	0.9358	
36	Total	11.2	2521	1.00	000	1484.9240	1.000	0 1.7	165	1.0000	
37 38					L	iquid Phase		Pha	se Fraction	1.000	
39 40	COMPONENTS	MOLAR FLC (kgmole/h) W	MOLE FRACTIO	NC	MASS FLOW (kg/h)	MASS FRACTIO	N LIQUID VOLU FLOW (m3/	ME LIC h)	QUID VOLUME FRACTION	
41	Benzene	0.0	0000	0.00	000	0.0000	0.000	0.0	000	0.0000	
42	E-Benzene	0.9	9036	0.08	303	95.9279	0.064	6 0.1	103	0.0642	
43	14-EBenzene	10.3	3485	0.91	97	1388.9961	0.935	4 1.6	062	0.9358	
44	Total	11.2	2521	1.00	000	1484.9240	1.000	0 1.7	165	1.0000	
45 46 47	Mater	rial Strea	am:	13				Fluid Package: Property Package:	Basis-1 Peng-Ro	obinson	
48 49					c	CONDITIONS					

49				CONDITIONS		
50			Overall	Vapour Phase	Liquid Phase	
51	Vapour / Phase Fractior		0.0000	0.0000	1.0000	
52	Temperature:	(C)	138.9	138.9	138.9	
53	Pressure:	(kPa)	110.0	110.0	110.0	
54	Molar Flow	(kgmole/h)	89.90	2.354e-004	89.90	
55	Mass Flow	(kg/h)	9539	2.494e-002	9539	
56	Std Ideal Liq Vol Flow	(m3/h)	10.96	2.867e-005	10.96	
57	Molar Enthalpy	(kJ/kgmole)	1.148e+004	4.718e+004	1.148e+004	
58	Molar Entropy	(kJ/kgmole-C)	-18.51	67.24	-18.51	
59	Heat Flow	(kJ/h)	1.032e+006	11.11	1.032e+006	
60	Liq Vol Flow @Std Cond	d (m3/h)	10.94 *	2.859e-005	10.94	
61				DDODEDTIES		
62				PROPERTIES		
63			Overall	Vapour Phase	Liquid Phase	
64	Molecular Weight		106.1	106.0	106.1	
65	Molar Density	(kgmole/m3)	7.133	3.341e-002	7.137	
66	Mass Density	(kg/m3)	756.9	3.540	757.3	
67	Act. Volume Flow	(m3/h)	12.60	7.047e-003	12.60	
68	Mass Enthalpy	(kJ/kg)	108.2	445.3	108.2	
69	Aspen Technology I	nc.	A	spen HYSYS Versio	n 11	Page 9 of 18

Licensed to: Company Name Not Available

Company Name Not Available Bedford, MA USA Case Name: simulacao46pratos_TCC.hsc

SI

Unit Set:

Date/Time: Mon Feb 13 19:26:44 2023

Fluid Package:

Material Stream: 13 (continued)

Property Package:	Peng-Robinson

Basis-1

9			PROPERTIES		
10 11		Overall	Vapour Phase	Liquid Phase	
12	Mass Entropy (kJ/kg-C)	-0.1744	0.6346	-0.1744	
13	Heat Capacity (kJ/kgmole-C)	223.8	176.4	223.8	
14	Mass Heat Capacity (kJ/kg-C)	2.109	1,665	2,109	
15	LHV Molar Basis (Std) (kJ/kgmole)				
16	HHV Molar Basis (Std) (k.l/kgmole)				
17	HHV Mass Basis (Std) (k //kg)				
18	CO2 Loading				
19	CO2 Apparent Mole Conc. (kgmole/m3)				
20	CO2 Apparent Wt Conc (kgmol/kg)				
21	HV/ Mass Basis (Std) (k l/kg)				
22	Phase Fraction [Vol. Basis]	2 615e-006	2 615e-006	1 000	
23	Phase Fraction [Mass Basis]	2.615e-006	2.615e-006	1.000	
24	Phase Fraction [Act Vol. Basis]	5 5910-004	5 5910-004	0.000	
25	Mass Exoraly (k l/kg)	33.3318-004	5.5516-004	0.5554	
26	Partial Prossure of CO2 (kPa)	0.000			
27	Cost Based on Flow (Cost/s)	0.0000	0.000	0.000	
28	Act Gas Flow (ACT m3/b)	7.047e-003	7.047e-003	0.0000	
20	Ave Lie Dopsity (kemolo/m3)	8 100	8 212	8 100	
20	Avg. Liq. Density (kgmole/ms)	0.199	176 /	0.199	
31	Std Cas Flow (STD m3/b)	223.0	5 5660 003	223.0	
32	Std. Ideal Lig. Mass Donsity (kg/m3)	870.0	3.300e-003	870.0	
33	Act Lig Flow (m3/c)	3 4000 003	070.1	3 4000 003	
34	Z Easter	3.4998-003	0.0612	1,4996-003	
35	Watson K	10.36	10.36	4.4998-003	
36		10.00	10.00	10.00	
37	Partial Pressure of H2S (kPa)	0.000			
38	Cp/(Cp - R)	1 039	1 049	1 039	
39		1.003	1.043	1.005	
40	Ideal Gas Cp/Cv	1.050	1.001	1.270	
41	Ideal Gas Cp (k.l/kgmole-C)	175.3	175.0	175.3	
42	Mass Ideal Gas Cp (kJ/kg-C)	1.652	1.652	1.652	
43	Heat of Vap. (kJ/kgmole)	3.547e+004			
44	Kinematic Viscosity (cSt)		2.293	0.2711	
45	Lig. Mass Density (Std. Cond) (kg/m3)	872.2	872.3	872.2	
46	Lig. Vol. Flow (Std. Cond) (m3/h)	10.94	2.859e-005	10.94	
47	Liquid Fraction	1.000	0.0000	1.000	
48	Molar Volume (m3/kgmole)	0.1402	29.93	0.1401	
49	Mass Heat of Vap. (kJ/kg)	334.3			
50	Phase Fraction [Molar Basis]	0.0000	0.0000	1.0000	
51	Surface Tension (dyne/cm)	16.52		16.52	
52	Thermal Conductivity (W/m-K)	0.1114	1.911e-002	0.1114	
53	Bubble Point Pressure (kPa)	110.0			
54	Viscosity (cP)	0.2053	8.117e-003	0.2053	
55	Cv (Semi-Ideal) (kJ/kgmole-C)	215.5	168.1	215.5	
56	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.031	1.586	2.031	
57	Cv (kJ/kgmole-C)	209.7	166.9	175.1	
58	Mass Cv (kJ/kg-C)	1.976	1.575	1.650	
59	Cv (Ent. Method) (kJ/kgmole-C)				
60	Mass Cv (Ent. Method) (kJ/kg-C)				
61	Cp/Cv (Ent. Method)				
62	Reid VP at 37.8 C (kPa)	2.790	2.909	2.790	
63	True VP at 37.8 C (kPa)	2.793	2.911	2.793	
64	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	10.94	2.859e-005	10.94	
65	Viscosity Index	-27.96			
66					
67					
60					

69 Aspen Technology Inc.

Aspen HYSYS Version 11

1				Case Name: sim	ulacao46prato	s_TCC.h	sc		
2	(aspentech	Company Name No Bedford, MA	t Available	Unit Set: SI					
4	Ċ. I	USA		Date/Time: Mor	n Feb 13 19:26	6:44 2023	}		
5 6						Flui	d Package: B	asis-1	
7	Mater	ial Stream:	13 (contir	nued)		Dro	a ruokago. B	lang Pohinson	
8 9						110	perty rackage.		
10			(COMPOSITION					
11 12			(Overall Phase			Vapour F	Fraction 0.0000	
13 14	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	MASS FLOW (kg/h)	MASS FRA	CTION	LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION	
15	Benzene	0.1699	0.0019	13.2734		0.0014	0.0150	0.0014	
16	E-Benzene	89.7268	0.9981	9525.9392		0.9986	10.9489	0.9986	
17	14-EBenzene	0.0012	0.0000	0.1570		0.0000	0.0002	0.0000	
10	TOLAI	09.0979	1.0000	9539.3696		1.0000	10.9642	1.0000	
20			<u> </u>	Vapour Phase			Phase F	raction 2.619e-006	
21 22	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	MASS FLOW (kg/h)	MASS FRA	CTION	LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION	
23	Benzene	0.0000	0.0074	0.0001		0.0055	0.0000	0.0054	
24	E-Benzene	0.0002	0.9926	0.0248		0.9945	0.0000	0.9946	
25	14-EBenzene	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	
26	lotal	0.0002	1.0000	0.0249		1.0000	0.0000	1.0000	
27	Liquid Phase Phase Fraction 1.000								
29 30	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	MASS FLOW (kg/h)	MASS FRA	CTION	LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION	
31	Benzene	0.1699	0.0019	13.2733		0.0014	0.0150	0.0014	
32	E-Benzene	89.7266	0.9981	9525.9144		0.9986	10.9489	0.9986	
33	14-EBenzene	0.0012	0.0000	0.1570		0.0000	0.0002	0.0000	
34	Total	89.8977	1.0000	9539.3446		1.0000	10.9641	1.0000	
35 36	Ener	gv Stream:	E conden	ser		Flui	d Package: B	asis-1	
37		3,				Pro	perty Package: P	eng-Robinson	
38 39				CONDITIONS					
40	Duty Type:	Direct Q	Duty Calculation	Operation: Condens	er @COL1				
41	Duty SP:	5.369e+006 kJ/h	Minimum Availa	ble Duty:		Maximu	ım Available Duty:		
42	F					Flui	d Package: B	asis-1	
43 44	Ener	gy Stream:	EP-2			Pro	perty Package: P	eng-Robinson	
44 45							, , ,	5	
46				CONDITIONS					
47	Duty Type:	Direct Q	Duty Calculation	Operation:	P-100				
48	Duty SP:	5184 kJ/h	Minimum Availa	ble Duty: 0).0000 kJ/h	Maximu	ım Available Duty:		
49 50	Ener	au Ctra and				Flui	d Package: B	asis-1	
ວປ 51	Ener	gy Stream:				Pro	perty Package: P	eng-Robinson	
52				CONDITIONS					
53									
54 57	Duty Type:	Direct Q	Duty Calculation	Operation: Reboil	er @COL1	Ma .			
50 56	Duty SP:	5.2386+006 KJ/h	I IVIINIMUM AVaila		J.UUUU KJ/N	iviaximu	Available Duty:		
	B.0. (Flui	d Package: B	asis-1	

Material Stream: Boilup @COL1

57	Mata	rial Stra	am: Bailun			Fluid Package:	Basis-1				
58	Wate	nai Sue	ani. Bonup			Property Package:	Peng-Robinson				
59				CONDITIONS							
60											
61			Overall	Vapour Phase							
62	Vapour / Phase Fraction		1.0000	1.0000							
63	Temperature:	(C)	191.3	191.3							
64	Pressure:	(kPa)	140.0	140.0							
65	Molar Flow	(kgmole/h)	127.8	127.8							
66	Mass Flow	(kg/h)	1.645e+004	1.645e+004							
67	Std Ideal Liq Vol Flow	(m3/h)	19.00	19.00							
68	Molar Enthalpy	(kJ/kgmole)	2.128e+004	2.128e+004							
69	Aspen Technology In	C.	A	n 11		Page 11 of 18					

Licensed to: Company Name Not Available

1			Case Name: simulacao46pratos_TCC.hsc							
3	empany Redford, M	ame Not Available A	Unit Set:	SI						
4 5	USA		Date/Time:	Mon Feb 13 19:26:4	4 2023					
6				<i>(</i> 1)	Fluid Package: Basis-1					
7 8	Material Stre	am: Boilup @	gCOL1 (co	ontinued)	Property Package:	Peng-Robinson				
9			CONDITIONS							
10		0 "								
11	Molar Entropy (k.l/kgmole-C)	169.9	169.9							
13	Heat Flow (kJ/h)	2.719e+006	2.719e+006							
14	Liq Vol Flow @Std Cond (m3/h)	18.98 *	18.98							
15 16			PROPERTIES							
17		Overall	Vapour Phase							
18	Molecular Weight	128.7	128.7							
19	Molar Density (kgmole/m3)	3.829e-002	3.829e-002							
20	Mass Density (Kg/m3)	4.927	4.927							
21	Mass Enthalpy (k.l/kg)	165.4	165.4							
23	Mass Entropy (k.l/kg-C)	1 321	1 321							
24	Heat Capacity (kJ/kgmole-C)	247.7	247.7							
25	Mass Heat Capacity (kJ/kg-C)	1.925	1.925							
26	LHV Molar Basis (Std) (kJ/kgmole)									
27	HHV Molar Basis (Std) (kJ/kgmole)									
28	HHV Mass Basis (Std) (kJ/kg)									
29	CO2 Loading									
30	CO2 Apparent Mole Conc. (kgmole/m3)									
31	CO2 Apparent Wt. Conc. (kgmol/kg)									
32 33	LHV Mass Basis (Std) (KJ/Kg)	1.000	1 000							
34	Phase Fraction [Mass Basis]	1.000	1.000							
35	Phase Fraction [Act. Vol. Basis]	1.000	1.000							
36	Mass Exergy (kJ/kg)	177.6								
37	Partial Pressure of CO2 (kPa)	0.0000								
38	Cost Based on Flow (Cost/s)	0.0000	0.0000							
39	Act. Gas Flow (ACT_m3/h)	3338	3338							
40	Avg. Liq. Density (kgmole/m3)	6.727	6.727							
41	Specific Heat (kJ/kgmole-C)	247.7	247.7							
42	Std. Gas Flow (STD_m3/h)	3022	3022							
43	Std. Ideal Liq. Mass Density (kg/m3)	865.6	865.6							
44	Z Factor	0.9470	0.9470							
46	Watson K	10.73	10.73							
47	User Property									
48	Partial Pressure of H2S (kPa)	0.0000								
49	Cp/(Cp - R)	1.035	1.035							
50	Cp/Cv	1.043	1.043							
51	Ideal Gas Cp/Cv	1.035	1.035							
52	Ideal Gas Cp (kJ/kgmole-C)	245.6	245.6							
53	wass luear Gas Cp (KJ/Kg-C) Heat of Van (k l/kamala)	1.908	1.908							
55	Kinematic Viscosity (cSt)	1 649	1 640							
56	Lig. Mass Density (Std. Cond) (kg/m3)	866.7	866.7							
57	Liq. Vol. Flow (Std. Cond) (m3/h)	18.98	18.98							
58	Liquid Fraction	0.0000	0.0000							
59	Molar Volume (m3/kgmole)	26.12	26.12							
60	Mass Heat of Vap. (kJ/kg)	318.3								
61	Phase Fraction [Molar Basis]	1.0000	1.0000							
62	Surface Tension (dyne/cm)									
63	I nermal Conductivity (W/m-K)	2.270e-002	2.270e-002							
04 65	Viscosity (cP)	8 1230 003	 8 1220 002							
66	Cv (Semi-Ideal) (kJ/kamole-C)	239.4	239.4							
67	Mass Cv (Semi-Ideal) (kJ/kq-C)	1.860	1.860							
68	Cv (kJ/kgmole-C)	237.5	237.5							
69	Aspen Technology Inc	Asi	pen HYSYS Versi	on 11		Page 12 of 18				

Case Name: simulacao46pratos_TCC.hsc 2 Company Name Not Available 3 (aspentech Bedford, MA Unit Set: SI 4 LISA Date/Time: Mon Feb 13 19:26:44 2023 5 6 Basis-1 Fluid Package: 7 Material Stream: Boilup @COL1 (continued) Property Package: Peng-Robinson 8 9 PROPERTIES 10 11 Overall Vapour Phase 12 Mass Cv (kJ/kg-C) 1.846 1.846 13 Cv (Ent. Method) (kJ/kgmole-C) 14 Mass Cv (Ent. Method) (kJ/kg-C) ----____ 15 Cp/Cv (Ent. Method) 16 Reid VP at 37.8 C (kPa) 0.8334 0.8334 17 True VP at 37.8 C (kPa) 0.8335 0.8335 18 Liq. Vol. Flow - Sum(Std. Cond) (m3/h) 18.98 18.98 19 -25.65 Viscosity Index 20 COMPOSITION 21 22 **Overall Phase** Vapour Fraction 1.0000 23 24 MASS FLOW LIQUID VOLUME COMPONENTS MOLAR FLOW MOLE FRACTION MASS FRACTION LIQUID VOLUME 25 (kgmole/h) FLOW (m3/h) FRACTION (kg/h) 26 Benzene 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 27 25.2143 0.1973 2676.8979 0.1628 3.0768 0.1620 E-Benzene 28 14-EBenzene 102.5781 0.8027 13768.2388 0.8372 15.9215 0.8380 29 Total 127.7924 1.0000 16445.1368 1.0000 18.9983 1.0000 30 Vapour Phase Phase Fraction 1.000 31 32 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION LIQUID VOLUME LIQUID VOLUME 33 FLOW (m3/h) FRACTION (kgmole/h) (kg/h) 34 0.0000 Benzene 0.0000 0.0000 0.0000 0.0000 0.0000 35 E-Benzene 25.2143 0.1973 2676.8979 0.1628 3.0768 0.1620 36 14-EBenzene 13768.2388 0.8380 102.5781 0.8027 0.8372 15.9215 37 127.7924 1.0000 16445.1368 1.0000 18.9983 1.0000 Total 38 Fluid Package: Basis-1 Material Stream: Reflux @COL1 39 Property Package: Peng-Robinson 40 41 CONDITIONS 42 43 Vapour Phase Liquid Phase Overall 44 Vapour / Phase Fraction 0.0000 0.0000 1.0000 45 138.9 138.9 138.9 Temperature: (C) (k<u>Pa)</u> 46 110.0 110.0 Pressure: 110.0 47 Molar Flow (kgmole/h) 61.47 0.0000 61.47 48 Mass Flow 6523 0.0000 6523 (kg/h) 49 Std Ideal Liq Vol Flow (m3/h) 7.497 0.0000 7.497 50 Molar Enthalpy (kJ/kgmole) 1.148e+004 4.718e+004 1.148e+004 51 Molar Entropy (kJ/kgmole-C) -18.51 67.24 -18.51 52 7.057e+005 Heat Flow (kJ/h) 0.0000 7.057e+005 53 Liq Vol Flow @Std Cond 7 4 7 9 0.0000 7.479 (m3/h) 54 PROPERTIES 55 Vapour Phase Liquid Phase 56 Overall 57 Molecular Weight 106.1 106.1 106.0 58 Molar Density 7.137 3.341e-002 7.137 (kamole/m3) 59 Mass Density 757.3 3.540 757.3 (kg/m3) 60 Act. Volume Flow (m3/h) 8.613 0.0000 8.613 61 Mass Enthalpy 108.2 445.3 108.2 (kJ/kg) 62 Mass Entropy -0.1744 -0.1744 (kJ/kg-C) 0.6346 63 223.8 Heat Capacity (kJ/kgmole-C) 223.8 176.4 Mass Heat Capacity 64 2.109 1.665 2.109 (kJ/kg-C) 65 LHV Molar Basis (Std) (kJ/kgmole) -------66 HHV Molar Basis (Std) (kJ/kgmole) -------

Aspen Technology Inc. Licensed to: Company Name Not Available

(kJ/kg)

HHV Mass Basis (Std)

CO2 Loading

67

68

69

Aspen HYSYS Version 11

1			Case Name:	Case Name: simulacao46pratos_TCC.hsc							
3	empaspentech Bedford,	MA	Unit Set:	SI							
4 5	USA		Date/Time:	Mon Feb 13 19:26:44 2	2023						
6 7 8	Material Stre	eam: Reflux	@COL1 (co	ntinued)	Fluid Package: B Property Package: P	asis-1 eng-Robinson					
9			PROPERTIES								
11		Overall	Vapour Phase	Liquid Phase							
12	CO2 Apparent Mole Conc. (kgmole/m3)			·							
13	CO2 Apparent Wt. Conc. (kgmol/kg)										
14	LHV Mass Basis (Std) (kJ/kg)										
16	Phase Fraction [Mass Basis]	0.0000	0.0000	1.000							
17	Phase Fraction [Act. Vol. Basis]	0.0000	0.0000	1.000							
18	Mass Exergy (kJ/kg)	33.74									
19	Partial Pressure of CO2 (kPa)	0.0000									
20	Cost Based on Flow (Cost/s)	0.0000	0.0000	0.0000							
21	Act. Gas Flow (ACT_m3/h)										
22	Avg. Liq. Density (kgmole/m3) Specific Heat (k l/kgmole_C)	223.8	8.212	223.8							
24	Specific fleat (K5/Kgillole-C) Std. Gas Flow (STD m3/h)	1453	0.0000	1453							
25	Std. Ideal Liq. Mass Density (kg/m3)	870.0	870.1	870.0							
26	Act. Liq. Flow (m3/s)	2.393e-003		2.393e-003							
27	Z Factor		0.9612	4.499e-003							
28	Watson K	10.36	10.36	10.36							
29	User Property										
31	Cp/(Cp - R)	1 039	1 049	1 039							
32	Cp/Cv	1.278	1.017	1.278							
33	Ideal Gas Cp/Cv	1.050	1.050	1.050							
34	Ideal Gas Cp (kJ/kgmole-C)	175.3	175.0	175.3							
35	Mass Ideal Gas Cp (kJ/kg-C)	1.652	1.652	1.652							
36	Heat of Vap. (kJ/kgmole)	3.547e+004									
37	Kinematic Viscosity (CSt)	0.2711	2.293	0.2711							
39	Lig. Vol. Flow (Std. Cond) (m3/h)	7.479	0.0000	7.479							
40	Liquid Fraction	1.000	0.0000	1.000							
41	Molar Volume (m3/kgmole)	0.1401	29.93	0.1401							
42	Mass Heat of Vap. (kJ/kg)	334.3									
43	Phase Fraction [Molar Basis]	0.0000	0.0000	1.0000							
44	Surface Lension (dyne/cm)	16.52		16.52							
46	Bubble Point Pressure (kPa)	110.0	1.9110-002								
47	Viscosity (cP)	0.2053	8.117e-003	0.2053							
48	Cv (Semi-Ideal) (kJ/kgmole-C)	215.5	168.1	215.5							
49	Mass Cv (Semi-Ideal) (kJ/kg-C)	2.031	1.586	2.031							
50	Cv (kJ/kgmole-C)	175.1	166.9	175.1							
51	Mass Cv (kJ/kg-C)	1.650	1.575	1.650							
53	Mass Cy (Ent, Method) (k.l/kg-C)										
54	Cp/Cv (Ent. Method)					<u> </u>					
55	Reid VP at 37.8 C (kPa)	2.790	2.909	2.790							
56	True VP at 37.8 C (kPa)	2.793	2.911	2.793							
57	Liq. Vol. Flow - Sum(Std. Cond) (m3/h)	7.479	0.0000	7.479							
58	VISCOSITY INDEX	-27.96									
60			COMPOSITION								
61 62			Overall Phase		Vapour F	Fraction 0.0000					
63 64	COMPONENTS MOLAR F (kgmole	LOW MOLE FRACTI	ON MASS FLOW (kg/h)	MASS FRACTIO	N LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION					
65	Benzene	0.1162 0.00	9.076	63 0.001	4 0.0103	0.0014					
66	E-Benzene 6	1.3551 0.99	981 6513.829	0.998	7.4869	0.9986					
67	14-EBenzene	0.008 0.00	000 0.107	74 0.000	0 0.0001	0.0000					
68	Total 6	1.4721 1.00	000 6523.013	32 1.000	0 7.4973	1.0000					
69	Aspen Technology Inc.	A	spen HYSYS Versio	n 11		Page 14 of 18					

1				Case Name: simulacao46pratos_TCC.hsc								
3	(aspentech	Bedford, M	Name No IA	ot Available		Unit Set:	SI					
4		USA				Date/Time:	Mor	n Feb 13 19:26:44	2023	3		
6									Flui	d Package: B	asis-1	_
7	Mater	rial Stre	am:	Reflux (@(COL1 (co	nt	inued)	Dro	norty Packago:	ong Pobinson	
8 9									110	perty rackage.		
10					C	OMPOSITION						
11					V	apour Phase				Phase F	raction 0.00	000
12 13	COMPONENTS	MOLAR FL	ow	MOLE FRACTIO	DN	MASS FLOW		MASS FRACTIO	N			MF
14		(kgmole/	h)			(kg/h)				FLOW (m3/h)	FRACTION	
15	Benzene	0.	.0000	0.00	74	0.000	00	0.00	55	0.0000	0.00	054
16 17	L-Benzene	0.	0000	0.99	26 00	0.000	00	0.99	45 00	0.0000	0.99	946 100
18	Total	0	.0000	1.00	00	0.000	00	1.00	00	0.0000	1.00	000
19					L	iquid Phase				Phase F	raction 1.0	000
20 21	COMPONENTS		0.W/			MASS EL OW/			ואר			
22		(kgmole/	h)			(kg/h)				FLOW (m3/h)	FRACTION	VIL.
23	Benzene	0	.1162	0.00	19	9.076	63	0.00	14	0.0103	0.00	014
24 25	E-Benzene	61	.3551	0.99	81 00	6513.829	95 74	0.99	86 00	7.4869	0.99	986 200
26	Total	61.	.4721	1.00	00	6523.013	32	1.00	00	7.4973	1.00	000
27									Flui	d Package: B	asis-1	
28 20	Mater	rial Stre	am:	To Con	de	nser @C	OI	L1	Pro	perty Package: P	ena-Robinson	
30										, , , ,	0	
31						CONDITIONS			_			
32	Vanour / Phase Fraction			Overall 1 0000	V	apour Phase						
34	Temperature:	(C)		139.0		139.0						
35	Pressure:	(kPa)		110.0		110.0						
36	Molar Flow	(kgmole/h)		151.4		151.4						
37 38	Mass Flow Std Ideal Lig Vol Flow	(Kg/h) (m3/h)		1.606e+004 18.46		1.606e+004 18.46						
39	Molar Enthalpy	(kJ/kgmole)		4.695e+004		4.695e+004						
40	Molar Entropy	(kJ/kgmole-C)		67.56		67.56						
41 42	Lig Vol Flow @Std Cond	(kJ/h) (m3/h)		7.107e+006 18.42 *		7.107e+006 18.42						
43					D							
44				a "								
45 46	Molecular Weight			Overall 106 1	V	apour Phase 106 1						
47	Molar Density	(kgmole/m3)		3.340e-002		3.340e-002						
48	Mass Density	(kg/m3)		3.544		3.544						
49 50	Act. Volume Flow	(m3/h) (k.l/kg)		4533 442 4		4533 442 4						
51	Mass Entropy	(kJ/kg-C)		0.6367		0.6367						
52	Heat Capacity	(kJ/kgmole-C)		176.8		176.8						
53 54	Mass Heat Capacity	(kJ/kg-C)		1.666		1.666						
55	HHV Molar Basis (Std)	(kJ/kgmole)										
56	HHV Mass Basis (Std)	(kJ/kg)										
57 58	CO2 Loading	(kamolo/m2)										
59	CO2 Apparent Wole Conc.	(kgmol/kg)										
60	LHV Mass Basis (Std)	(kJ/kg)										
61	Phase Fraction [Vol. Basis	5] icl		1.000		1.000			_			
63	Phase Fraction [Mass Bas	u∍j Basis]		1.000		1.000			+			
64	Mass Exergy	- (kJ/kg)		126.2								
65	Partial Pressure of CO2	(kPa)		0.0000								
00 67	Act. Gas Flow	(Cost/s) (ACT_m3/h)		4533		4533			+		<u> </u>	
68	Avg. Liq. Density	(kgmole/m3)		8.199		8.199						
69	Aspen Technology Inc).		As	spen	HYSYS Versio	n 11	1			Page 15 of	18

69 Aspen Technology Inc. Licensed to: Company Name Not Available

2

3

4

Company Name Not Available Bedford, MA USA

Case Name:

Unit Set:

simulacao46pratos TCC.hsc

SI

Mon Feb 13 19:26:44 2023

Date/Time: 5 6 Basis-1 Fluid Package: Material Stream: To Condenser @COL1 (cont 7 Property Package: Peng-Robinson 8 9 PROPERTIES 10 11 Overall Vapour Phase 12 Specific Heat (kJ/kgmole-C) 176.8 176.8 13 Std. Gas Flow (STD_m3/h) 3579 3579 14 Std. Ideal Liq. Mass Density (kg/m3) 870.0 870.0 15 Act. Liq. Flow (m3/s) 16 Z Factor 0.9611 0.9611 17 Watson K 10.36 10.36 18 User Property ----19 Partial Pressure of H2S (kPa) 0.0000 20 Cp/(Cp - R) 1.049 1.049 21 Cp/Cv 1.057 1.057 22 Ideal Gas Cp/Cv 1.050 1.050 23 Ideal Gas Cp (kJ/kgmole-C) 175.4 175.4 24 Mass Ideal Gas Cp (kJ/kg-C) 1.653 1.653 25 3.547e+004 Heat of Vap. (kJ/kgmole) ----26 Kinematic Viscosity (cSt) 2.289 2.289 27 Liq. Mass Density (Std. Cond) (kg/m3) 872.2 872.2 28 Liq. Vol. Flow (Std. Cond) 18.42 18.42 (m3/h) 29 Liquid Fraction 0.0000 0.0000 30 Molar Volume (m3/kgmole) 29.94 29.94 31 Mass Heat of Vap. (kJ/kg) 334.3 ----32 Phase Fraction [Molar Basis] 1.0000 1.0000 33 Surface Tension (dyne/cm) --------34 (W/m-K) 1.912e-002 Thermal Conductivity 1.912e-002 35 **Bubble Point Pressure** (kPa) 110.5 ----36 Viscosity 8.111e-003 8.111e-003 (cP) 37 Cv (Semi-Ideal) 168.5 (kJ/kgmole-C) 168.5 38 Mass Cv (Semi-Ideal) 1.588 1.588 (kJ/kg-C) 39 167.3 Cv (kJ/kgmole-C) 167.3 40 Mass Cv 1.576 1.576 (kJ/kg-C) 41 Cv (Ent. Method) (kJ/kgmole-C) ---42 Mass Cv (Ent. Method) (kJ/kg-C) 43 Cp/Cv (Ent. Method) ---44 Reid VP at 37.8 C 2.790 2.790 (kPa) 45 True VP at 37.8 C 2.793 2.793 (kPa) 46 Liq. Vol. Flow - Sum(Std. Cond) (m3/h) 18.42 18.42 47 Viscosity Index -28.01 48 COMPOSITION 49 50 **Overall Phase** 1.0000 Vapour Fraction 51 52 COMPONENTS MOLAR FLOW MASS FLOW LIQUID VOLUME LIQUID VOLUME MOLE FRACTION MASS FRACTION 53 FLOW (m3/h) FRACTION (kamole/h) (ka/h) 54 Benzene 0 2861 0 0019 22 3497 0 0014 0 0253 0 0014 55 F-Benzene 151.0820 0 9981 16039 7687 0 9986 18 4358 0 9986 56 14-EBenzene 0.0020 0.0000 0.2644 0.0000 0.0003 0.0000 57 Total 151.3701 1.0000 16062.3828 1.0000 18.4615 1.0000 58 Vapour Phase Phase Fraction 1.000 59 60 COMPONENTS MOLAR FLOW MOLE FRACTION MASS FLOW MASS FRACTION LIQUID VOLUME LIQUID VOLUME 61 FLOW (m3/h) FRACTION (kgmole/h) (kg/h) 62 0.0019 22.3497 0.0014 0.0014 Benzene 0.2861 0.0253 63 151.0820 0.9981 16039.7687 0.9986 18.4358 0.9986 E-Benzene 64 14-EBenzene 0.0020 0.0000 0.2644 0.0000 0.0003 0.0000 65 151.3701 1.0000 16062.3828 1.0000 18.4615 1.0000 Total 66 67 68 69 Aspen Technology Inc.

1			Case Name:	simulacao46pratos_T	CC.hsc									
3	(aspentech Bedford, M	A	Unit Set:	SI										
4 5	USA		Date/Time:	Mon Feb 13 19:26:44 2023										
6	Material Ofre	To Doko			Fluid Package: Basis-1									
7 8	waterial Stre	am: To Rebo	lier @COL	-1	Property Package:	Peng-Robinson								
9	CONDITIONS													
10		Overall	Vapour Phase	Liquid Phase										
12	Vapour / Phase Fraction	0.0000	0.0000	1.0000										
13	Temperature: (C)	183.8	183.8	183.8										
14	Pressure: (kPa)	140.0	140.0	140.0										
15	Molar Flow (kgmole/n) Mass Flow (kg/h)	139.0 1 793e+004	0.0000	139.0 1 793e+004										
17	Std Ideal Liq Vol Flow (m3/h)	20.71	0.0000	20.71										
18	Molar Enthalpy (kJ/kgmole)	-2.000e+004	2.852e+004	-2.000e+004										
19	Molar Entropy (kJ/kgmole-C)	82.25	147.8	82.25										
20	Heat Flow (kJ/h)	-2.780e+006	0.0000	-2.780e+006										
22		20.09	0.0000	20.69	1									
23	PROPERTIES													
24		Overall	Vapour Phase	Liquid Phase										
25	Molecular Weight	129.0	123.0	129.0										
20	Molar Density (kgmole/m3)	5.562	3.881e-002 4 772	5.562										
28	Act. Volume Flow (m3/h)	25.00	0.0000	25.00										
29	Mass Enthalpy (kJ/kg)	-155.1	231.9	-155.1										
30	Mass Entropy (kJ/kg-C)	0.6378	1.202	0.6378										
31	Heat Capacity (kJ/kgmole-C)	300.7	231.2	300.7										
32	Mass Heat Capacity (KJ/kg-C)	2.332	1.881	2.332										
34	HHV Molar Basis (Std) (kJ/kgmole)													
35	HHV Mass Basis (Std) (kJ/kg)													
36	CO2 Loading													
37	CO2 Apparent Mole Conc. (kgmole/m3)													
38	CO2 Apparent Wt. Conc. (kgmol/kg)													
40	Phase Fraction [Vol. Basis]			1.000										
41	Phase Fraction [Mass Basis]	0.0000	0.0000	1.000										
42	Phase Fraction [Act. Vol. Basis]	0.0000	0.0000	1.000										
43	Mass Exergy (kJ/kg)	65.56												
44	Partial Pressure of CO2 (kPa)	0.0000												
46	Act. Gas Flow (ACT m3/h)													
47	Avg. Liq. Density (kgmole/m3)	6.712	7.048	6.712										
48	Specific Heat (kJ/kgmole-C)	300.7	231.2	300.7										
49	Std. Gas Flow (STD_m3/h)	3288	0.0000	3288										
50	Std. Ideal Liq. Mass Density (Kg/m3) Act Lig. Flow (m3/s)	6 944e-003	866.6	6 944e-003										
52	Z Factor		0.9495	6.625e-003	_									
53	Watson K	10.74	10.65	10.74										
54	User Property													
55 56	Partial Pressure of H2S (kPa)	0.0000												
57		1.028	1.037	1.028										
58	Ideal Gas Cp/Cv	1.035	1.038	1.035										
59	Ideal Gas Cp (kJ/kgmole-C)	242.6	229.2	242.6										
60	Mass Ideal Gas Cp (kJ/kg-C)	1.882	1.864	1.882										
61 62	Heat of Vap. (kJ/kgmole)	4.094e+004												
63	Liq. Mass Density (Std. Cond) (ka/m3)	866.6	868.2	866.6	1									
64	Liq. Vol. Flow (Std. Cond) (m3/h)	20.69	0.0000	20.69										
65	Liquid Fraction	1.000	0.0000	1.000										
66	Molar Volume (m3/kgmole)	0.1798	25.77	0.1798										
67 68	Invises Heat of Vap. (kJ/kg) Phase Fraction [Molar Basis]	317.5												
69	Aspen Technology Inc	Asn	en HYSYS Versio	n 11		Page 17 of 18								
<u> </u>		, top												

1					Case Name: simulacao46pratos_TCC.hsc								
3	@aspentech	Bedford, MA	ame Not Available		Init Set: SI	SI							
4 5		C	Date/Time: Mon Feb 13 19:26:44 2023										
6						/ /	Flui	d Package: Ba	asis-1				
7 8	Mater	ial Stream	: To Reb	oile	er @COL1	(contir	ון _{Pro}	perty Package: Pe	eng-Robinson				
9				PI	ROPERTIES								
10			Querrall	1		Linuid Dhara							
12	Surface Tension	(dyne/cm)	Overall 13.67	va	pour Phase	Liquid Phase	8 3 67						
13	Thermal Conductivity	(W/m-K)	0.1061		2.234e-002	0.1	061						
14	Bubble Point Pressure	(kPa)	140.0										
15	Viscosity	(cP)	0.2129		8.257e-003	0.2	129						
16	Cv (Semi-Ideal) (I	kJ/kgmole-C)	292.4		222.9	2	92.4						
18	Cv (Semi-ideal)	(KJ/KG-C)	2.200		221.2	2.	200						
19	Mass Cv	(kJ/kg-C)	2.268		1.799	2.	268						
20	Cv (Ent. Method) (I	kJ/kgmole-C)											
21	Mass Cv (Ent. Method)	(kJ/kg-C)											
22	Cp/Cv (Ent. Method)	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,											
23	True VP at 37.8 C	(KPa)	0.8100		1.331	0.8	100						
25	Lig. Vol. Flow - Sum(Std. C	Cond) (m3/h)	20.69		0.0000	20	0.69						
26	Viscosity Index	, , , ,	-23.64										
27				00	MPOSITION								
28		COMPOSITION											
29 30				0\	/erall Phase			Vapour F	raction 0.0000				
31	COMPONENTS	MOLAR FLOW	MOLE FRACTION	ON	MASS FLOW	MASS FRA	CTION	LIQUID VOLUME	LIQUID VOLUME				
32		(kgmole/h)			(kg/h)			FLOW (m3/h)	FRACTION				
33	Benzene	0.0000	0.00	000	0.0000		0.0000	0.0000	0.0000				
34	E-Benzene	26.1178	0.18	878	2772.8258	0.1546		3.1870	0.1539				
35	14-EBenzene	112.9266	0.81	22	15157.2350		0.8454	20 7148	0.8461				
37	Total	133.0444	1.00		n 930.0000		1.0000	20.7140	1.0000				
38				Va	pour Phase			Phase Fra	action 0.0000				
39 40	COMPONENTS	MOLAR FLOW (kgmole/h)	MOLE FRACTION	ЛС	MASS FLOW (kg/h)	MASS FRACTION		LIQUID VOLUME FLOW (m3/h)	LIQUID VOLUME FRACTION				
41	Benzene	0.0000	0.00	000	0.0000		0.0000	0.0000	0.0000				
42	E-Benzene	0.0000	0.40)15	0.0000		0.3467	0.0000	0.3453				
43	14-EBenzene	0.0000	0.59	85	0.0000	0.6533		0.0000	0.6547				
44	Total	0.0000	1.00	000	0.0000		1.0000	0.0000	1.0000				
45				Li	quid Phase			Phase Fra	action 1.000				
47	COMPONENTS MOLAR FLOW MOLE FRACTION		NC	MASS FLOW	OW MASS FRACTION		LIQUID VOLUME	LIQUID VOLUME					
48	-	(kgmole/h)			(kg/h)			FLOW (m3/h)	FRACTION				
49 E0	Benzene	0.0000	0.00	000	0.0000		0.0000	0.0000	0.0000				
ວ∪ 51	E-Benzene	26.1178 112 0266	0.18	22	2772.8258		0.1546	3.1870 17 5277	0.1539				
52	Total	139.0444	1.00	000	17930.0608		1.0000	20.7148	1.0000				
53	_						Flui	d Package: Ba	asis-1				
54	Ener	gy Stream	: E cond	ens	ser @COL	.1	Pro	nerty Package: Pa	ang-Robinson				
55 56							110	perty r dokage. T e	sig-robinson				
57				С	ONDITIONS								
58	Duty Type:	Direc	t Q Duty Calcul	ation O	peration: Conder	nser @COL1							
59	Duty SP:	5.369e+006 k	J/h Minimum Av	/ailable	e Duty:		Maximu	um Available Duty:					
60	Ener	av Strees		10"			Flui	d Package: Ba	asis-1				
01 62	Ener	gy Stream	I. ⊏ repol	ier	WCOL1		Pro	perty Package: Pe	eng-Robinson				
63				~									
64				C	UNDITIONS								
65	Duty Type:	Direc	t Q Duty Calcul	ation O	peration: Rebo	oiler @COL1							
66 67	Duty SP:	5.238e+006 k	J/n Minimum Av	/ailable	e Duty:	0.0000 kJ/h	Maximu	um Available Duty:					
68													
69	Aspen Technology Inc		Δ	spen	HYSYS Version	11			Page 18 of 18				