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Resumo

Neste trabalho, utilizo Redes Geradoras Adversariais para transformar mapas desenhados
à mão em suas versões fantasiosas. Utilizando a biblioteca tkinter, em Python, desen-
volvo um aplicativo de desenho no qual um usuário pode rapidamente rabiscar um mapa
e submetê-lo a um Modelo Gerador, chamado Pix2Pix. Dessa forma, ele obtém instan-
taneamente a ajuda da inteligência artificial para adicionar mais detalhes à sua ideia,
aumentando assim a velocidade e eficiência. Embora eu tenha me concentrado principal-
mente na aplicação dessa ideia em mapas desenhados a mão de RPG de mesa, o conceito
pode ser estendido a outros domínios, como, por exemplo, videogames e até plantas ar-
quitetônicas. Ao longo deste trabalho, explico a teoria por trás do modelo e apresento os
resultados obtidos ao utilizá-lo em três experimentos diferentes. No primeiro experimento,
uma versão pré-treinada do modelo é utilizada para avaliar suas capacidades gerais. No
segundo, utilizo um conjunto personalizado de dados feito à mão para treinar o modelo, e
apresento o aplicativo desenvolvido para melhorar a experiência do usuário. No terceiro
e último, utilizo um pequeno conjunto de dados que contém imagens de alta resolução
para avaliar a capacidade de aprendizagem do modelo. Concluindo o trabalho, apresento
minhas próprias opiniões sobre os resultados e dou uma visão sobre novos modelos que
podem ser utilizados para melhorar a qualidade da imagem.

Palavras-chave: GANs, Pix2Pix, Jogos, Criação de Mapas, Redes Geradoras, Tradução
de Imagem para Imagem
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Abstract

In this work I use Generative Adversarial Networks to transform hand-drawn maps into
their computerized fantasy versions. With Python’s tkinter GUI library, I develop a
drawing application in which a user can quickly sketch a map and submit it to a Generative
Model called Pix2Pix. In this manner, he instantly gets the help of artificial intelligence
to add more detail to his idea, increasing speed and efficiency. While I mainly focus on the
application of this idea to hand-drawn tabletop RPG maps, the concept of translating
drawings to images can be extended to other domains such as video games and even
architecture blueprints. Throughout this work I explain the theory behind the model and
present the results obtained when utilizing it in three different experiments. In the first, a
pre-trained version of the model is used to asses its overall capabilities. In the second, I use
a custom hand-made dataset to train the model and I showcase the developed application
to improve user experience. In the last, I use a small dataset that contains high resolution
images to asses the model’s learning ability. Concluding the work, I give my own personal
opinions over the results and give a intuition of newer models that can be used to improve
image quality.

Keywords: GANs, Pix2Pix, Games, Map Creation, Generative Networks, Image-To-
Image Translation
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Chapter 1

Introduction

In recent years, the field of artificial intelligence and deep learning has witnessed significant
advancements, mainly due to the emergence of a new class of learning models known as
Generative models. As their name suggests, these are models that have the ability of
generating data. Among various applications, they have revolutionized the task of image
creation by enabling the automatic generation of visually appealing and high-quality
content. In this space, both DALL-E and Midjourney, have been gathering significant
attention for their impressive results.

Figure 1.1: Dalle-2 example prompt and output, from [1].
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Both, using their own specialized methods, have the ability to create artwork that
satisfies a specific request given as textual prompt [8], [9]. As these models continue to
gain praise for their contributions to the world of AI-driven creativity, another related
task is becoming increasingly apparent: Image to Image translation.

Image translation is a field of research within computer vision that studies the pos-
sibilities of transforming images from one domain to another while preserving relevant
content and structure. Traditionally, image translation tasks relied on image processing
algorithms and techniques such as image denoising or edge detection to be solved. How-
ever, advancements in AI have opened doors to face more complex problems, driving the
development of innovative solutions.

Among the various generative-based architectures designed to tackle this problem,
Pix2Pix has gained significant attention and popularity since its introduction in 2016.
It has demonstrated remarkable results in image-to-image translation tasks, where it
established itself as a go-to method in these types of problems and sparked further research
in the field of image translation using generative models.

A notable application of the Pix2Pix architecture lies in its ability to transform draw-
ings and sketches into pictures. Figure 1.2 presents a demonstration where the Pix2Pix
model used the sketch as base to generate an image of a cat. This unique application
empowers artists by allowing them to actively participate in the creative process. By
increasing the participation of the user in the process, this application bridges the gap
left by prompt-based models by maintaining a sense of connection and ownership over
the final results.

Figure 1.2: Edges to Cat example demo, from [2]

1.1 Motivation

Dungeons and Dragons, commonly known as DnD, is a fantasy pen and paper role-playing
game that was first published in 1974 [10]. Role-playing game, or RPG, is a gaming genre
where participants assume the personality of made up characters in a fictional setting.
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In the game, participants must act within their character narrative and explain what
their character would like to do in different situations. These actions can succeed or fail,
according to a predefined set of rules and guidelines. Within the rules, players have the
freedom to improvise and their actions are only limited by the power of imagination. The
publication of DnD is commonly referred to as the beginning of modern role-play gaming.

In DnD, player characters embark on adventures within a fantasy scenario. What
makes the game unique is that everything about the players’ characters is created by
themselves: their goals, abilities and flaws. When playing the game, each participant
decides their character’s actions based on these definitions. The players’ characters join
into an adventure group called a party, and together solve mysteries, engage in battles
and explore the world they are set in.

Figure 1.3: Dungeons & Dragons gameplay

In order for the game to flow, one of the participants assumes the role of Game Master
(GM), also called the Dungeon Master (DM). The GM acts as the game’s storyteller and
referee, setting the scenes the players are in, presenting the problems and challenges they
face and assuming the personality of every inhabitant of the game world, called NPCs,
or non-playable characters, that the player characters can interact with and engage in
conversations.

The gameplay is divided into sessions of play and has indefinite length. During each
session, players face many challenges and completing many adventures designed by the
GM. The set of all related game adventures form what is known as a campaign.

The game requires three component to be played.

• The three core rulebooks The Player’s Handbook, the Dungeon Master’s Guide and
the Monster Manual, that outline the core rules of the game.

• Character Sheets for players to take notes and record specific attributes or items
their character has.

• A set of dice used to determine the success, or failure, of a character’s action.

3



Beyond that, many players like to use additional accessories such as miniature figures and
maps that enhance the player experience and immersion.

Over the years, alongside advancements in electronic components, the RPG genre
evolved towards new media format. Powerful graphical cards enabled the genre to expand
onto computer screens and televisions, where immersive scenarios and lifelike NPCs could
be rendered in real time. These visual enhancements, that each time more accurately
captured the fantastical ambiance of the adventure, attracted the interest and admiration
of the gaming community.

Despite the expansion to new media, the interest in traditional pen and paper format
remained. As the on-screen visuals improved, the interest in reproducing a similar am-
biance on pen and paper games emerged and multiple tools to design maps and character
images were created to fill this need. Despite these tools offering the ability to create
impressive visuals, they often have a steep learning curve and are time-consuming. Just
creating a quick map or character photo can take multiple hours scattered throughout
many days.

1.2 Goals

In this context, the difficulty of easily creating fantasy maps is a problem faced within
the RPG community. Due to the difficulty in using online tools, players are left with
the option of creating the game world maps using pen and paper. Although most of the
time this satisfies the immediate need for a basic spacial representation, it falls short of
providing an immersive experience.

Not only that, but creating maps and assets is also a problem faced in the entire
gaming industry. In order to create the previously mentioned ambiance that exists in
Video Games, developers stay thousands of hours coding each detail that will be rendered
onscreen. Due to this, the release of new games can take months and even years.

In this work, I use Artificial Intelligence to address this ongoing problem. More specif-
ically, I have the objective of transforming traditional pen-and-paper sketches, scanned
with a printer, into fantasy maps. Additionally, I aim in developing a drawing environ-
ment in which players can sketch their map ideas and have the model interpret these
sketches and output a faithful fantasy map representation of what the person envisioned
with the sketch.

1.3 Project Structure

The remaining portion of this work is divided into three additional chapters.

4



Chapter 2 introduces the fundamental concepts required to understand the final
model used in the project, called Pix2Pix. It covers an explanation of generative models
and their distinction from traditional classifiers. Beyond that, it explains how the GANs
framework innovated the field of generative AI and explores enhancements, such as con-
ditional generation, and fixes that aimed in addressing issues such as training instability.
Additionally, the chapter discuesses various methods to evaluate generative models and
presents algorithms used to create training datasets.

Chapter 3 provides details of the development process. Each section in this chap-
ter represents an experiment that builds upon the successes and failures of the previous.
It delivers detailed explanation for the procedures employed in training and testing the
model, with a special focus on explaining how the data used for training was created and
how it affected the model’s output. The chapter also demonstrates the custom draw-
ing tool developed to further enhance the testing experience. Throughout the chapter,
conclusions and insights are presented, highlighting key observations made during each
iteration of the experiment.

Chapter 4 provides an overview and conclusion of the entire experiment. It assesses
if the goals for the project were achieved as well as propose other models and techniques
that can be explored in the future to further improve the project’s overall performance.

5



Chapter 2

Theory

In recent years, research in the field of Artificial Intelligence has surged in wave-like
patterns. A groundbreaking discovery ignites a wave of excitement among researchers,
leading to great expectations and paving the way for a network of new investigations. We
are currently experiencing such phenomenon.

Although the use of AI for solving classification problems has become well-established,
its application in tasks involving generative behavior had previously shown limited progress.
However, there has been a recent upturn in advancements in this area [11]. Novel models
are being actively researched and utilized as the foundation for even more refined and
sophisticated approaches.

This has transformed the online landscape to withhold a flood of AI-generated content
such as images, videos, music and even small to large articles.

2.1 Data Classifiers

Andrew Y. Ng and Michael I. Jordan, define two learning models [12]: Generative and
Discriminative. They provide a comparison of these models in terms of their approach to
solving classification tasks.

As they explain, Discriminative models have the goal of learning how to map an input
x to a known label or class y. These models achieve this by directly learning how to
calculate the conditional probability p(y|x), shorthand for what is the probability of y

given x.
Generative models, on the other hand, have the goal of learning the direct mapping of

an input x to a label y. In other words, it learns a model of the joint probabilities p(x, y)

6



Figure 2.1: Discriminative Classification, from developers.google.com

of the input and uses Bayes Theorem:

P (y|x) = P (x, y)
P (x) (2.1)

to calculate p(y|x). This means that Generative classifiers solve a more general modeling
problem before classification.

In practical terms, Discriminative models will output how likely your input is to each
of its known labels while Generative models will output a possible input that can be
mapped to a specified label.

While [12] mainly focuses on explaining why Discriminative models are a better fit
for classification tasks, it can be infered that Generative models offer a solution to the
problem of creating new data.

2.2 Generative Models

Generative Models operate on the principle that every image can be interpreted as a
probability distribution of it’s pixels.

(a) Image’s Pixels (b) Histogram of the Pixels

The core concept behind Generators is to establish a mapping of similar images to a
shared spatial probability.
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Figure 2.3: Generator Spatial Mapping, from developers.google.com

By sampling values from a random distribution, the Generator can then remap these
values to another distribution that fits within the learned spatial distribution. In this
manner, it effectively generates new data with desired characteristics.

Figure 2.4: Distribution Remapping, from deeplearningbook.com.br

2.3 Adversarial Networks

In the context of generative models, the goal is to learn a model that can generate fake
data samples that seamlessly resemble a given distribution set. However, achieving this
has proven to be quite challenging, primarily due to the difficulty in directly approxi-
mating complex probabilistic computations that arise in maximum likelihood estimation
strategies.

Another challenge arises from the difficulty in leveraging the piecewise linear units
that are commonly used in neural networks. Backpropagation, the algorithm used to
update network parameters, relies on the flow of gradient information through the network
layers. However, in generative networks, the errors between each linear unit are difficult
to minimize, making the optimization process problematic.

In 2014, Ian J. Goodfellow et al [3], proposes a novel training strategy that manages
to get around these problems.

He introduces an adversarial network framework in which two neural networks are put
to compete against each other. The first of those networks is called the Generator and
the other is the Discriminator.
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The Generator network’s job is to create fake data and the Discriminator’s job is to
determine whether a given data input sample came from a real (1) data distribution or
from a fake (0) generated distribution.

The training framework presents itself as a competition game that simultaneously
improves both networks: the Generator creates data increasingly more similar to the real,
and, the Discriminator distinguishes what is fake or real.

In this sense, this training strategy is commonly compared to a group of counterfeiters
printing money (the generator creating data) trying to fool the police that is looking out
for fake money (discriminator figuring if data is real of fake). However, in this case, instead
of apprehending the counterfeiters, the police provides feedback to the counterfeiters on
how they can improve their craft and create better replicas of the real money.

Figure 2.5: GANs compared to a group of counterfeiters and a detective, from
datahacker.rs

Our desired optimum result happens when the Discriminator cannot distinguish fake
from real, meaning, the generator creates data with characteristics identical to the real.

By employing this strategy, Goodfellow sidesteps the need to directly optimize the
Generator by implicitly learning the complex probability distribution without directly
observing the target data.

2.4 Adversarial Training of the Generator

Neural networks are function approximation algorithms. They operate like a black box,
where they estimate an unknown underlying function using a subset of data provided
by observations in the domain. During the training process, through a technique called
back-propagation, the error between the predicted outputs and the expected outputs is
calculated and used by the neural network to update it’s parameters in order to minimize
this error [13]. Through many iterations of error calculation and parameter optimization,
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the network progressively adapt its parameters to effectively map those of the underlying
data.

The Generator is a neural network represented by the function G(z; θg), where θg are
learnable parameters. It receives a random noise vector z as input and outputs data
xg = G(z). The vector z is created by sampling data points from a random Gaussian dis-
tribution pz. The xg output from the generator is treated as a sample from the Generator’s
model distribution pg.

Essentially, the Generator’s function learns to map a data point sampled from this
random distribution pz to the target real data distribution px. Of course we can’t expect
that this mapping will be perfect, so we refer to as pg, the new distribution created by
the Generator function.

As previously explained, the primary goal of the Generator is to maximize the proba-
bility of creating data that the Discriminator classifies as real. This means that when the
Discriminator receives a fake generated input, xg, it should indicate that the input is from
the real data distribution. In mathematical terms, this can be expressed as D(xg) = 1.

In his research, Goodfellow formalized this idea by proposing the minimization of the
Generator’s objective function:

V (G) = Ez∼pz(z)[log(1−D(G(z)))] (2.2)

Note that minimizing this objective function is the same as maximizing:

V ′(G) = Ez∼pz(z)[log(D(G(z)))] (2.3)

The first function states that the Generator wants the minimize the amount of times
the Discriminator is right and, in the other, it wants to maximize the times it is wrong.

[3] states that the minimization problem tends to saturate, since the initial generated
outputs are clearly different from the real and that solving the maximization problem
provides stronger gradients early in training.

2.5 Adversarial Training of the Discriminator

The Discriminator is another neural network represented by the function D(x; θd), where
θd are learnable parameters.

The Discriminator receives data x as input and outputs a corresponding probability
value y = D(x) indicating the likelihood of that input data being real by assigning a value
closer to 1 or fake, assigning a value closer to 0.
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The Discriminator has two main objectives. It wants to maximize the times it correctly
says a real image is indeed real. It also wants to maximize the times it correctly says a
fake image is indeed fake. In mathematical terms, this is expressed as D(xr) = 1 and
D(G(z)) = 0.

In his research, Goodfellow formalized this idea by proposing the maximization of the
Discriminator’s objective function:

V (D) = Ex∼pdata(x)[log(D(x))] + Ez∼pz(z)[log(1−D(G(z)))] (2.4)

2.6 Adversarial Training

The adversarial minimax game can finally be defined as:

min
G

max
D

V (G, D) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.5)

following the proposed training algorithm:

Algorithm 1 GAN training algorithm
for number of training iterations do

1. Update Discriminator
• Create a batch of m noise samples {z1, ..., zm}
• Create a batch of m examples {x1, ..., xm} of real data
• Update the Discriminator by ascending it’s stochastic gradient

∇θd

1
m

m∑
i=1

[log(D(xi)) + log(1−D(G(zi)))] (2.6)

2. Update Generator
• Create a batch of m noise samples {z1, ..., zm}
• Update the Generator by descending it’s stochastic gradient

∇θg

1
m

m∑
i=1

[log(1−D(G(zi)))] (2.7)

end for

The intuition behind the training algorithm is that we begin by updating the Dis-
criminator’s weights so it has a preliminary knowledge of distinguishing real and fake
examples.
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After that, we update the Generator by using the Discriminator’s gradient as guide.
By using the gradient of the Discriminator with respect to fake samples, we can update
the Generator to create examples that better represent real data.

2.7 GAN Loss

Implementations of the GAN framework use the Binary Cross Entropy Loss function
during training.

2.7.1 Entropy

Entropy [14] measures the degree of uncertainty of a given distribution p:

H(p) =
∑

x

p(x) · log( 1
p(x)) = −

∑
x

p(x) · log(p(x)) (2.8)

For example, imagine we have 2 events x0 and x1, and their observed probabilities are
p(x0) = 0 and p(x1) = 1. By inputting it into Equation 2.8 we get that the entropy is 0.
This means that we are certain that event x1 will happen, since it’s probability is 100%.

Alternatively, if p(x0) = 0.5 and p(x1) = 0.5, we’d get that the entropy is log(2),
indicating a higher degree of uncertainty. As the number of possible outcomes grows or,
more importantly, as the probabilities become more indistinguishable and closer together,
the larger the entropy will be.

2.7.2 Cross Entropy

The cross entropy [14] emerges when we want to approximate an unknown distribution p

by some other distribution q:

Hp(q) = −
∑

c

q(yc) · log(p(yc)) (2.9)

If both distributions are equal, the cross-entropy and entropy will be the same. But
if they are not, the difference between them tells us how similar, or not, they are. This
difference is refered to as Kullback-Leibler Divergence [14]:

DKL(q||p) = Hp(q)−H(q) (2.10)

The closer the distribution p get to the know distribution q, the lower their divergence
will be.

12



2.7.3 Binary Cross Entropy

The Binary Cross Entropy is a derived form of the general Cross Entropy equation when
there are only two output classes involved:

− 1
N
·

N∑
i

[yi · log p(yi) + (1− yi) · log(1− p(yi))] (2.11)

Each yi output can take a value of either 1 or 0. If y = 0, the first part of Equation
2.11 goes away and when y = 1, the second part goes away.

2.7.4 BCE and GANs

By observing Equation 2.11 we can clearly see their relation with the GAN objective
function, Equation 2.5.

When we pass a yi = 1, real data, we are calculating the probability of data being
real, or log(D(x)). Similarly, when we pass a yi = 0, false data, we are calculating the
probability of data having been generated, or log(1−D(G(z))).

The average over the summation of each yi input returns the expectation of each value,
as intended by the original value function.

2.7.5 Initial results

The original paper [3] offered interesting results. Note that for each of the following
samples, the rightmost column shows the nearest training example of the neighboring
generated sample. Figure 2.6 illustrates some of the outputs generated by the model
when tasked with creating digits. Beyond that, Figure 2.7 demonstrates the potential of
GANs in generating realistic-looking faces. Finally, Figure 2.8 shows RGB image samples
of random objects.

Figure 2.6: GANS trained on MNIST, from [3].
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Figure 2.7: GANS trained on TFD, from [3].

Figure 2.8: GANS trained on CIFAR-10, from [3].

These initials results highlight the potential of the adversarial framework for generating
images, while also revealing its current limitations in interpreting RGB images. However,
future research address this issues and manage to propose solutions to overcome them.

2.8 Conditioning GANs

The original model proposed by Goodfellow et. al, had promising results which were
quickly improved upon by the research community. One such improvement involved
addressing the issue of excessive randomness in generated outputs.

To understand the problem, consider a Generator trained on the MNIST dataset. This
dataset is commonly used in AI research and consists of a large database of hand written
numbers ranging from zero to nine. A generator network trained on this dataset has the
ability to output a random image of one of these digits. However, there are situations
where the desired outcome is not just any number, but a specific one. Unfortunately,
unconditional generators offer no control over the output. In order to tackle this challenge,
researchers delved into the topic of conditional generation, as discussed by Mirza et. al
in [4].

14



The original unconditional model can be extended to a conditioned model by append-
ing extra information y to both generator and discriminator nets:

min
G

max
D

V (G, D) = Ex∼pdata(x)[log D(x|y)] + Ez∼pz(z)[log(1−D(G(z|y)))] (2.12)

In common implementations of this network, the extra information is incorporated
directly into the input layers. Specifically, the Generator receives this extra information as
a one-hot vector label which is appended to the random noise vector and the discriminator
as a one-hot matrix label which is added as extra image channels.

A one-hot vector is simply an array consisting of zeroes and ones portraying a specif
label among a predetermined set. For example, the array {0, 0, 1, 0} will represent one
possible class out of other four possible different ones. Similarly, a one-hot matrix follows
the same idea, but instead of an array, it uses an entire grid of ones or zeroes to represent
its labels, for example: {{0...}, {0...}, {1...}, {0...}}. The idea of appending an extra
information y to both discriminator (x) and generator (z) inputs is illustrated in Figure
2.9.

Figure 2.9: Appending extra information as input to network, from [4]

While this approach serves well for explanatory purposes, newer implementations have
shifted towards using embedding layers in order to optimize input size.
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Now, since both generator and discriminator nets are provided with the same class
label, the generator will not only be trained on the discriminator’s ability to distinguish
between fake or real data but also on its ability to distinguish real or fake representations
of a particular class.

Once you reach the production stage, modifying the one-hot vector y allows the gen-
eration of class-specific outputs.

2.9 Issues with GANs

Despite the great success in GANs, instability during training led to issues such as mode
collapse and vanishing gradients. The study conducted by [15] explores the training
dynamics of generative adversarial networks and makes the initial steps towards
understanding these problems.

Mode Collapse A common problem faced by generative models is known as Mode Col-
lapse, where a model fails to generate diverse samples and is reinforced into creating
a limited range of outputs. An example of this would be if a GANs network trained
on the MNIST digits dataset would be stuck into generating only 0s or 9s, failing
to generate the other classes.

Vanishing Gradients Another common problem faced by GANs is called vanishing
gradients. This problem arises from the utilization of the BCE loss function to model
the minimax game. The Discriminator, having a relatively easier task, advances
faster than the Generator which needs to simulate complex features, specially at the
beginning of training. When the Discriminator is optimized too fast, its gradient
tends to zero and the update it gives to the Generator gets worse.

2.10 Convolutional GANs

One notable contribution that addressed the instability of GANs during training was
explored by Radford et. al [16]. In their research, they propose a set of rules that
improve instability.

The authors explore the use of Convolutional Networks to upscale images. They
explain that other attempts at implementing this architecture had been unsuccessful, but
through extensive exploration they achieved success.

This success was mainly due to the fact that they adopted a set of guide lines to their
CNN architecture:

• Replace pooling layers with convolutional layers.

16



• Use of batchnorm.

• Remove fully connected layers for deep networks.

• Use ReLU activation layer for all layers of the Generator, except for the last, which
uses the Tanh activation.

• Use LeakyReLU for all layers of the Discriminator.

By adopting these guidelines, [16] observed notable improvements in training stabil-
ity. The authors explain that batch normalization of the input helped in preventing the
Generator from collapsing. Furthermore, they also explain that replacing pooling layers
for strided convolutions allowed the model to learn its own spatial sampling. Lastly, they
explain that the use of bounded activation functions allowed the Generator to learn more
quickly.

Despite this architecture being able to generate pleasing results, it still lacked theory
on explaining its stability, relying mainly on heuristic findings.

2.11 Wasserstein GANs

Another improvement came from identifying problems of the original proposed BCE loss
function, which led to the introduction of a new method for calculating the loss term, as
proposed in [17].

2.11.1 Problem with BCE

As explained by the authors, BCE essentially minimizes the KL divergence between the
real data distribution pr and the generated distribution pg. However, there are situations
where these distributions are too far apart and have no type of intersection. In such cases,
the KL distance tends to become undefined and impractical for measuring the discrepancy
between distributions.

One proposed solution is to add noise to generated images, in order to artificially shift
the distribution towards the objective data distribution. This noise, however, degrades
the quality of the outputs, making them blurry. The authors of [17] state that the added
noise term is clearly incorrect for the problem.

2.11.2 Earth Movers Distance

Opposing KL divergence, [17] propose using another method, knwon as Earth Movers
Distance (EMD):
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W (pr, pg) = inf
γϵΠ(pr,pg)

E(x,y)∼γ[∥x− y∥] (2.13)

to calculate the difference between probabilities.
Intuitively, EMD calculates the amount of effort required to transform one set or

distribution into another. This is measured by calculating all multiple plans (γ) for
transporting data from the source distribution to the target and finding the one with
minimal cost. In mathematics, this operation is represented by the infimum (inf) operator.

The authors state that calculating every transport plan is impractical, however present
that EMD can be approximated using the Kantorovich-Rubinstein duality [18], resulting
in:

W (pr, pg) = sup
∥f∥L≤1

Ex∼pr [f(x)]− Ex∼pg [f(x)] (2.14)

where ∥f∥L ≤ 1 means that the function f is 1Lipschitz continuous, has a slope
less than or equal to 1. The supremum (sup) defines the smallest value of a set that is
larger than all values of a given subset. An intuition of the duality between infimum and
supremum is depicted in Figure 2.10, where the filled green balls represent the subset S

of the ordered set P of balls.

Figure 2.10: Infimum vs Supremum, from wikipedia.com

This meant that by bounding the probability functions of the GANs architecture
the objective functions is simplified to a straightforward subtraction. Beyond that, one
could train the Discriminator to an optimal state and still receive informative gradients
to improve the Generator. Consequently, this resulted in a more stable training and
reduction of mode collapse.

2.11.3 WGAN Loss

The objective function for WGAN obtained by the Kantorovich-Rubinstein duality is
expressed as:

min
G

max
D

V (G, D) = Exr∼pr [D(xr)]− Ez∼pz [D(G(z))] (2.15)

It is important to notice that in this setup the Discriminator is no longer functioning
as a classifiers. Instead, it is called a critic, where values obtained from the loss aren’t
restricted to the range of 0 and 1.
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2.11.4 Enforcing K-Lipschitz Continuity

Initially, to ensure that the gradients of the network remained bounded, the authors of [17]
proposed manually clipping the weight of the Discriminator to lie within a compact space
[−c, c].

However, as stated by them Weight clipping is a clearly terrible way to enforce a
Lipschitz constraint. The first reason for this is that choosing a boundary for weight
clipping involves empirical results, which makes it difficult to find a general solution.
Secondly, by clipping the weights of the Discriminator we limit it’s ability to effectively
learn.

2.11.5 Improving the Enforcement of K-Lipschitz Continuity

It didn’t take long for new approaches of enforcing K-Lipschitz continuity to arrise. One
such approach, proposed in [19], introduces a method of penalizing the gradient of the
Discriminator.

The authors first state that a function is 1-Lipschtiz if and only if it has gradients
with norm at most one. Based on this statement, instead of directly clipping the weights,
they introduce a regularization term that penalizes the Discriminator’s gradient when it
exceeds a norm of one. A λ term is added to control the magnitude of this penalty.

min
G

max
D

V (G, D) = Exr∼pr [D(xr)]− Ez∼pz [D(G(z))]

+λEx̂∼px̂
[(∥∇x̂D(x̂)∥2 − 1)2]

(2.16)

From the WGAN-GP loss function, Equation 2.16, we can observe that the penal-
ization term acts over the Discriminator’s gradient over a new px̂ distribution. This
distribution is created by interpolating real and fake images by a random fraction ϵ, as
explained in Algorithm 2.

It is worth noting that penalizing the gradient does not enforce Lipschitz Continuity,
rather encourages it.

Algorithm 2 Interpolating Real and Fake Images
xg ← G(z)
xr ← pr

x̂← ϵxr + (1− ϵ)xg

Although the results were promising, penalizing the gradient comes with a severe
computational cost and, because of that, a new method of constraining the norm of the
gradient was proposed.
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2.11.6 Spectral Normalization

Takeru Miyato et. al [20] propose a new method called Spectral Normalization to en-
sure Lipschitz continuity. In their research, the team demonstrates how this method is
both simple and computationally efficient, offering a significant advantage over previous
approaches.

The core idea of spectral normalization is to controll the Lipschitz constant by con-
straining the spectral norm of each layer in the Discriminator network. The spectral norm
of a matrix A is defined as:

σ(A) := max
x
∥Ax∥2 : ∥x∥2 ≤ 1 (2.17)

and is equivalent to the largest singular value of matrix A. The authors use the inequality
∥g1 · g2∥k ≤ ∥g1∥k · ∥g2∥k to establish the following proposition:

∥f∥k ≤
L+1∏
l=1

σ(W l) (2.18)

which basically means that the network is k-Lipschitz bounded by the product of the
norms of each layer.

The proposed method aims to mantain the norm close to one, σ(W ) = 1, by dividing
the weight matrix over it’s norm:

Wsn := W

σ(W ) (2.19)

By applying this normalization to every layer l of the discriminator network, the authors
ensure a 1-Lipschitz bound on the discriminator function.

2.12 Image Translation

Image-To-Image Translation is a common type of computer vision and machine learning
task that involves generating a new image from an input image while preserving certain
visual characteristics of the original [21].

Some tasks that exemplify image-to-image translation include:

• Style Transfer: A task that involves applying an artists technique or style to a brand
new image. Style transfer allows us to see how a random picture might have looked
like if it were created by a famous painter;
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Figure 2.11: Example of style transfer, from towardsdatascience.com

• Colorization: A task that involves changing the color of images, such as adding
color to black and white images, or transforming a light themed web page to a dark
theme;

Figure 2.12: Example of colorization, from hotpot.ai

• Image Inpainting: A task that involves reconstructing missing parts of an image or
removing undesired ones. This is particularly useful for restoring parts of an image
or photo editing.

Figure 2.13: Example of image inpainting, from mdpi.com
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The goal of image to image translation is to enable machines to learn how to transform
images in ways that are visually pleasing and useful for a variety of applications.

2.13 Pix2Pix

Isola et. al in [22] introduce a new GANs architecture called Pix2Pix that proposes a
solution to the task of general purpose translation of images from one representation to
another.

In their research they explore and improve upon the techniques previously mentioned
in order to present a simple framework that can achieve sufficiently good results.

To build their Generator and Discriminator networks, the Pix2Pix research team took
inspiration on the Deep Convolutional GANs architecture with a few twists.

2.13.1 U-Net Generator

State-of-the-art solutions to the translation problem often employ an encode-decoder
structure [5]. This structure consists of a series of layers in which the input is passed
down through. The encoder component progressively down-samples the input, reducing
its spatial dimensions until it reaches a bottleneck layer. It is interesting to note that this
process maps the input to a representation of the latent z space.

After the bottleneck, the decoder component follows the inverse process, up-sampling
the data back to its original size.

The purpose of down-sampling and up-sampling is to allow the network to capture
and learn the most important features of the input. However, the Pix2Pix team observed
that this process discards desirable low-level features.

To address this issue, they included skip connections and follow the shape of a “U-
Net”, in which each down-sample layer is connected to its up-sample layer conjugate.
Each skip connection concatenates all channels from one layer to the other, allowing the
network to capture both high-level and low-level features of the input.

2.13.2 Pixel Loss

Another improvement the Pix2Pix team explored focused on the benefits of incorporating
an L1 loss term alongside the original GANs objective function. This approach was
inspired by previous studies that demonstrated that including the L1 loss term encouraged
the Generator’s output to be closer to the input. While previous research used L2 distance
to calculate the loss, the Pix2Pix team found that the L1 loss encouraged less blurring.
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Figure 2.14: U-Net Architecture, from [5]

The L1 loss measures the absolute pixel-wise difference between the fake generated
output and the target data. By adding this loss term, the Generator is able to capture low
frequency discrepancies between the output and the target, ensuring that the Generator
outputs data closer to target.

LL1(G) = Ex,y,z[∥xr −G(z, y)∥] (2.20)

2.13.3 PatchGAN Discriminator

Since the Generator already has the ability to measure low frequency errors between
output and target, the Pix2Pix team noted that they could restrict the Discriminator
to only observe the high frequencies. To accomplish this, they designed a Discriminator
architecture called PatchGAN.

Unlike previous Discriminators, that analyzed the image as a whole, the PatchGAN
convolutes across the image and analyzes smaller NxN patches of the image individually,
classifying it as real or fake. The final Discriminator’s output loss is the averaged sum of
all patches.

By analyzing small patches of the image, the Discriminator concentrates on the high-
frequency features. This process proved to be faster, since the Network turned out to be
smaller with fewer parameters, and returned better feedback to the Generator, even when
applied to arbitrarily large images.

2.13.4 Pix2Pix Architecture

The appendix of [22] provides comprehensive details of the Pix2Pix network architecture
and parameters. The final architecture and objective function, Equation 2.21, combine
aspects from Conditional GANs, WGANs and Deep Convolutional GANs.
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Figure 2.15: PatchGAN discriminator classifying a patch of the image, from
researchgate.net

min
G

max
D

V (G, D) = Exr∼pr [log D(xr, y)]− Ez∼pz [log(1−D(G(z, y), y))]

+λExr,z∼pr,pz [∥xr −G(z, y)∥]
(2.21)

The U-Net Generator follows a encoder-decoder architecture. The encoder portion of
the network, down-samples an input 256x256 RGB image to a 512 feature vector. Each
down-sampling step uses Convolutional layers to down-sample the given input. Each
convolution is followed by BatchNormalization and LeakyRelu activation layers.

The decoder portion of the network up-samples the feature vector back to a 256x256
RGB image. Each up-sampling step uses TransposedConvolutional layers to up-
sample the given input. Each transposed convolution is followed by BatchNormal-
ization and Relu activation layers. The final layer consists of a Tanh activation to
guarantee that the final output is within a normalized range of [-1,1].

The encoder and decoder portions of the network are connected via skip connection,
that concatenate the output of the decoder to the corresponding input of the decoder.
As mentioned previously, this helps preserving finer details that can be lost during down-
sampling.

Batch normalization re-scales the output of a layer to have 0 mean and standard devia-
tion of 1, over a batch sample. A specific normalization called InstanceNormalization
occurs when the batch size is 1, resulting in the normalization of the image within its
own pixels. Activation functions, as the name suggests, decides whether or not a neuron
should be activated. It’s main purpose is to add non-linearity to the network in order
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to simulate complex functions. As discussed in Section 2.10, applying these techniques
makes training of the model faster and more stable.

The PatchGan Discriminator used in Pix2Pix outputs a 30x30 probability grid indi-
cating whether a corresponding 70x70 patch of pixels is real or fake. During training,
it receives the concatenated pair of real and fake images, as input, and uses Convolu-
tional layers followed by BatchNormalization and Relu layers to output the desired
probability matrix.

Each training loop starts by generating a fake sample. Then, starting with the dis-
criminator, both networks are alternately updated. The discriminator employs Binary
Cross-Entropy (BCE) loss to ensure that it correctly identifies generated samples as
fake and valid samples as real. Contrary, the generator employs BCE loss to encourage
the discriminator to classify generated samples as real. Additionally, the generator em-
ploys L1 loss between the fake generated output and the desired output to encourage the
generation to create images more closely related to the desired outcome.

Figure 2.16: Pix2Pix Architecture, from [6].

2.14 Evaluating GANs

The evaluation of generative models poses a unique challenge compared to traditional
classifier networks. The usual technique for evaluating these kinds of neural networks
consists of testing the model on a unfamiliar labeled dataset and verifying its accuracy in
correctly classifying each label. However, the absence of concrete metrics that quantify
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the quality of generated data, makes it difficult to employ the same techniques used in
classifier models to evaluate generative models.

With this in mind, proposing new evaluation methods is an active area of research
where most used techniques revolve around assessing the quality and diversity of generate
outputs. Measuring quality is crucial since we want the model to create realistic and
high-quality data. In addition, measuring diversity of outputs is important, since a good
generative model should not produce near identical samples repeatedly, even if each sample
has high quality.

2.14.1 User Score

The most intuitive method for assessing image quality involves directly having human
volunteers judge the visual quality of generated samples. This approach has obvious
downsides. First, it requires finding and coordinating a large group of volunteers. Ad-
ditionally, as explained in [23], outcomes vary depending on the test setup. The study
observed that feedback from volunteers changed once they were made aware of their mis-
takes.

Considering this limitation, the research team recognized the need for a more general
and automated evaluation approach. They proposed a novel method that involved using
a classifier network to extract features of a image and calculate a final score of image
quality.

2.14.2 Inception Score

Explained in [24], the Inception Score (IS) utilizes google’s inception model, to create a
single value that measures quality and realism of a generated image.

The inception classifier detects whether a image contains specific objects or not. More
specifically, it takes a image as input and outputs a list of probabilities indicating the
likelihood of each labels’ presence in the image, summing up to one.

We can intuitively observe that if an image depicts only a single object, the classifier
will output one big probability peak, the probability of that specific class, and many low
probabilities to other known objects. However, if the image contains multiple objects, the
classifier will output a list of multiple similar probabilities for each of the observed classes
in the image. In other words, a image with a single object has low entropy, and images
with more than one object have high entropy.

The research team proposes applying the Inception model to a large sample of gen-
erated images to obtain the conditional probability p(y|x). If these images depict only a
single object, which is the desired effect, they will present low entropy. Beyond that, in

26



order to quantify the diverse aspect of images, the team defined that the marginal proba-
bility p(y), the sum of all conditional probabilities, should have high entropy. The further
apart these two distributions are from each other, the better the model is performing.
The intuition for measuring the distance between distributions is depicted through the
KL divergence:

IS = exp(Exg∼pg [DKL(p(y|xg)∥p(y))]) (2.22)

The final result is the exponent of the average distance for all images, where generated
images will present clearly distinct labels and the overall set of images will represent
diverse labels. The authors observed that this result closely correlated to evaluations
made by human volunteers.

Despite being promising, the inception score presented two major drawbacks: first it
was limited by the amount of classes known by the inception score. Second, the score
can’t correctly evaluate the model’s ability to generate more than one image per class.

2.14.3 FID

The Frechet Inception Distance (FID), proposed in [25], poses itself as an improved metric
that overcomes the limitations of the inception score.

Similar to its predecessor, the FID also utilizes the inception model, however, instead
of extracting a probability vector, the FID leverages the network as a feature extractor to
obtain feature embedding vectors from both generated and real images. These embeddings
are essentially a condensed representation of each image.

The team’s method consists of extracting the condensed information contained in
intermediate layers of the inception network and model it as a Gaussian distribution
with mean µ and covariance Σ. The final score can be calculated from the Wasserstein-2
distance between the modeled Gaussian distributions of generated and real image samples:

FID = ∥µr − µg∥2
2 + Tr(Σr + Σg − 2

√
ΣrΣg) (2.23)

,
where Tr is the trace operation which calculates the sum of all the elements in the

matrix’s diagonal.

2.15 Border Extraction

Border Extraction [26], also known as Edge Detection, is a common task in computer
vision. It consists of segmenting an image by detecting areas of discontinuity in pixel
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intensity. Pixels that belong to regions with abrupt changes in intensity are called Edge
Pixels. A set of connected edge pixels form an Edge. The main objective of edge
detection is to develop algorithms that can detect these intensity changes and define
boundaries of objects within an image.

Changes in intensity in an image can be detected using derivative operations. The
derivative of an image is computed through spatial convolution with a filter kernel, usually
a 3x3 matrix. The process of convolution consists of changing each processed pixel in the
image with the sum of the products of the kernel weights and the corresponding pixel
values within the region encompassed by the kernel. For example given a matrix

W =


w1 w2 w3

w4 w5 w6

w7 w8 w9

 (2.24)

and an image region

I =


p1 p2 p3

p4 p5 p6

p7 p8 p9

 (2.25)

the resulting output for convolving W with I at pixel p5 is

p̂5 =
9∑
k

wkpk (2.26)

The process of convolution means applying this procedure through all pixels of the image.

2.15.1 Sobel and Laplacian Edge Detectors

Two commonly used kernels for computing spatial derivatives are the Laplacian and the
Sobel kernels. The Sobel algorithm utilizes two kernels to compute the first-order deriva-
tive of an image in both horizontal (x) and vertical (y) directions. On the other hand,
the Laplacian algorithm uses a single kernel to compute the second-order derivative.

−1 0 1
−2 0 2
−1 0 1

 (2.27)

(a) Horizontal Sobel Operator

 1 2 1
0 0 0
−1 −2 −1

 (2.28)

(b) Vertical Sobel Operator

Applying the first-order derivative produces thicker edges in points of constant inten-
sity change, while the second-order derivative exhibits stronger response to finer details in
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 0 −1 0
−1 4 −1
0 −1 0

 (2.29)

Figure 2.18: Laplacian Operator

the image. Since the Laplacian kernel, used for calculating the second-derivative, is sensi-
tive to noise, it is common practice to apply a Gaussian smoothing to the image prior to
the convolution process, as explained by the Marr-Hildreth edge-detection algorithm [26].

2.15.2 Canny Edge Detector

Another commonly used algorithm for detecting edges is the Canny Edge Detector [26].
The Canny algorithm aims to improve upon the first derivative based detection by thin-
ning the thick edges detected in the initial pass illustrated in Figures 2.19 and 2.20. This
is achieved by a process called Non-Maximum Suppression, which consists of zeroing
out the intermediate pixels that end up composing the thick edges of the image. Each
pixel is compared with its two neighbors along the direction of the gradient and, if any
of these neighbors has a larger pixel intensity, then the pixel is set to zero, otherwise,
it stays the same. Following Non-Maximum Suppression, the image is further processed
using threshold techniques to reduce false edges. The Canny algorithm improves upon
normal thresholding by employing a technique called Hysteresis Thresholding, which
uses two threshold value to classify each pixel in the image as either strong, weak or
irrelevant. Irrelevant pixels are discarded, while strong pixels are assumed to be valid
edge pixels. Weak pixels can be transformed into strong pixels through a process called
Hysteresis, also known as Edge Tracking. If a weak pixel is 8-connected to a strong pixel,
it is marked as a strong pixel. After process of hysteresis, the remaining weak pixels are
also discarded, leaving only the strong pixels in the final result as illustrated in Figure
2.21.
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(a) Original Image (b) Blurred Image

Figure 2.19: Result of applying gaussian blur to the original image

(a) Magnitude (b) Gradient in X (c) Gradient in Y

Figure 2.20: Result of calculating the gradient of the blurred image
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(a) Non-Maximum Suppression (b) Hysteresis Thresholding

Figure 2.21: Result of Applying Non-Maximum Suppression and Hysteresis Thresholding
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Chapter 3

Development

In this chapter I will provide a detailed explanation of the problem I chose to tackle and
the various solutions I developed to solve it. I will first highlight the significance of the
problem and possible impacts it can make in the real world. After that, I will present the
challenges I faced and the thought process behind each solution I came up with. Each
solution presented its own additional set of problems that are addressed in subsequent
sections.

A general overview of the experiments is:

• I begin by using the Pix2Pix model, pre-trained to transform Google Maps views
into satellite images, to transform fantasy maps into satellite-like representations.

• Expanding upon the results of the first experiment, I employ border extraction
techniques to create my own dataset which will be used to train the Pix2Pix model.

• With the model trained on this new dataset, I develop a drawing application that
feeds user sketches to the network and instantly displays it’s outputs.

• In the fourth experiment I create a new dataset consisting of scanned hand-drawn
images of trees and rocks, without using border extraction techniques.

• With the intent of increasing the resolution of the model’s output, I train the model
with maps that contained high level of detail.

3.1 Translating Hand Drawn Maps

As an avid player of Dungeons and Dragons, a pen and paper board game that involves
imagination, I often find myself assuming the role of Dungeon Master. As the Dungeon
Master, one of my primary responsibilities is to come up with content and adventures
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for the players. An important aspect of this task involves crafting maps to represent the
game world and give the players a visual perspective of the place they are in.

While the internet provides many tools that can be used to create good looking maps,
most of them have a steep learning curve and can be time-consuming to master. As a
result, most Dungeon Masters resort to drawing the map by hand. With this in mind, I
came up with the idea of transforming these hand-drawn maps into ones that seemed to
be created by the computer program, combining the versatility and ease of drawing the
map by hand with the details of the ones generated with computer programs.

This idea led me to explore the concept of image translation. As I previously ex-
plained, image translation is a common computer vision task that can present itself in
multiple forms. In my case, the task involved translating hand-drawn maps into computer-
generated versions.

Although I presented the problem from the perspective of a Dungeons and Dragons
game, it is important to note that this problem can be generalized to any other game or
video game that involves map creation.

3.2 Translating Maps

I began my research by validating the idea of using the Pix2Pix model as a means of solving
the task of transforming hand-drawn maps into refined computer-generated versions. To
accomplish this, I needed two things: a working implementation of the model and an
image of a RPG city map for testing. The diagram depicted in Figure 3.1 outlines this
experiment’s idea, where I submit a randomly generated RPG map to the Pix2Pix model
and receive it’s satellite representation.

Figure 3.1: Diagram: Converting Random city map to Satellite

A PyTorch implementation of the Pix2Pix network is freely available on GitHub [2].
However, rather than using a untrained model, I opted to use a pre-trained version. This
choice helped save up some time while still offering a convenient starting point for my
experiments.
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Regarding the RPG city map image, I decided to deviate from using a hand-drawn
map. Instead, I used an online tool [7], to generate random images of RPG villages, which
closely resembled the input used by the model during training.

This test provided important feedback regarding the suitability of the Pix2Pix model
in this context. Although obvious adjustments were required to align the model with the
original proposal, this initial validation proved that the model would be able to achieve
the desired outcome.

3.2.1 Training Dataset

As I mentioned, rather than training the Pix2Pix model from scratch I decided on utilizing
a pre-trained version of the model. The authors of Pix2Pix have made many pre-trained
models available. After careful consideration, I decided that the Map2Sat pre-trained
model would be the most suitable for my initial application. This particular model has
been trained on the Maps Dataset, which consists of 1096 image pairs scraped from Google
Maps. Each pair consists of the representation of a specific region in the world as seen
in Google Maps view alongside its corresponding satellite view. This dataset had a close
resemblance to the data I aimed to transform, making it great as a starting point. An
illustrative example of this model’s capabilities is represented in Figure 3.2, where the
leftmost image represents the input, the image in the center is the expected output and
the rightmost image is the generated output from the network.

Figure 3.2: Map2Sat Input and Output Example.

3.2.2 Testing Data

The training data consists of a random village I created using the online tool mentioned
previously. This tool provides the ability to customize the image’s color palette. With this
functionality, I attempted to create an image that would closely resemble the images in
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(a) Color adjustments to the random input

(b) Generated outputs from corresponding adjustment

Figure 3.3: Inputs-Outputs pairs

the Maps Dataset. The images depicted in Figure 3.3a illustrate my process of adjusting
the colors to better match the map images.

3.2.3 Outputs

The images in Figure 3.3b illustrate how each adjustment I made to the input image
affected the output generated by the Pix2Pix model. We can see from the results that
the model managed to understand what elements in the input image represent a desired
generation of grass and water patches. However, it encountered difficulties in recognizing
and representing the houses and roads, despite my best efforts to mimic their shape and
color based on the training dataset.

3.2.4 Conclusions

Despite not achieving the desired results, this initial test provided encouraging insights
opening up possibilities for improvement. Overall, it served two primary purposes: it
provided an introduction to using the Pix2Pix network and it affirmed that the model has
the potential to perform map translation tasks. Building upon these insights, I decided
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to modify the training approach. Instead of using a pre-trained model, I will create a
custom dataset specifically tailored to the task of translating RPG maps.

3.3 Refining the Model

As I mentioned, after conducting my initial assessment of the Pix2Pix model, it became
clear that I had to change the data used for training the model. After careful consideration,
I decided to create a dataset specifically designed to meet the goals of my project. In the
following sections, I will describe the reasoning behind my choice and the process for its
creation. A general overview of this experiment is depicted in Figure 3.4, where a series of
map images undergo edge detection, resulting in a dataset consisting of Edge-Map image
pairs.

Figure 3.4: Diagram: Extracting borders from images to create Edge-Map dataset

3.3.1 Creating the Training Data

Initially, I utilized a model that was pre-trained on a dataset that didn’t represent the
desired end result. To address this, I decided to use a new dataset that would more closely
represent it. While there are many RPG maps available on the internet, all of them are
only the final image, without the intermediate sketches that got them to that point. Due
to this lack of map sketches, I chose to simulate them by extracting the borders from the
final map images.

Border Extraction, also known as Edge Detection, is a common computer vision task.
In order to extract the borders of the map image, I explored three popular algorithms that
detect edges: the Canny algorithm, the Sobel algorithm and the Laplacian algorithm. I
applied each algorithm to a random RPG map image I got from the internet, Figure 3.5,
and the results of each algorithm pass are depicted on the images of Figure 3.6.

As we can see the Sobel and Canny algorithms performed relatively well in detecting
the edges, while the Laplacian algorithm resulted in excessive noise. Nevertheless, I
observed that all resulting edge images contained too much detail and were not a faithful
representation of a quick hand-drawn sketch. This outcome was mainly due to the input
having too many details.
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Figure 3.5: DnD map, from reddit.com.

(a) Canny (b) Sobel (c) Laplacian

Figure 3.6: Edge Detection Results: Canny, Sobel, and Laplacian Edge Detectors (High-
Resolution Map)

To address this issue, I had the idea to continue using the village generator tool [7].
With this tool, I could create a map image with fewer details and extract the edges from
it, resulting in an end result that would be more similar to a hand-drawn sketch. Again, I
applied the same three algorithms to a new image, Figure 3.7, getting the corresponding
results displayed on images in Figure 3.8. A visual evaluation, led to the Laplacian
algorithm outperforming the other two algorithms, extracting all of the edges of the
image. Consequently, it became my method of choice for creating the dataset.

In a python script, I applied the Laplacian algorithm on a variety of map assets I
generated using the village generator tool. I concatenated each sketch output to the
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Figure 3.7: Map Randomly Generated with [7] .

(a) Canny (b) Sobel (c) Laplacian

Figure 3.8: Edge Detection Results: Canny, Sobel, and Laplacian Edge Detectors (Map
with Fewer Details)

original image, resulting in the final improved dataset. Figure 3.9 illustrates an example
of the concatenated image. After completing this process, the dataset consisted of 100
image pairs. Hopefully, training the Pix2Pix model with this dataset would enable it to
generate map translations that aligned more closely with the desired outcome.

Figure 3.9: Example taken from dataset of the map and corresponding edges.
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3.3.2 Training the Model with the New Dataset

Moving forward, the next step was to train the Pix2Pix model using the newly created
dataset. For this training I used the same architecture as the Pix2Pix team [22] and to
facilitate the process, I also used the script they offer for training the model from scratch
using a custom dataset [2]. The script consists of a simple training loop ranging over 100
epochs. During each epoch, the model is trained with all the images in the dataset. An
optional parameter called batch_size can be passed to the script in order to regulate
the number of samples processed by the model before updating its parameters. I decided
to experiment with different batch sizes and observe how each of them would affect the
overall performance of the network.

3.3.3 Conclusions

Table 3.1 demonstrates the effect of varying the batch_size between 1, 5, 10 and 50 on
the duration training the model for 100 epochs. We can see that increasing the batch size
from 1 to 10 had a small effect on training duration. However, using a batch size of 50
significantly extended the time required to train the model.

Table 3.1: Batch Size vs Duration

Batch Size Training Duration
1 6159 seconds
5 6179 seconds
10 6190 seconds
50 6540 seconds

Just looking at the results from the table can be misleading, since only training dura-
tion is not the best metric for evaluating performance of the model. A better evaluation
can be made by observing figures 3.10, 3.11, 3.12 and 3.13 that show outputs of the
network for each batch size. Each figure respectively illustrate the input edges, the gen-
erated fake outputs and the desired real output images across epochs 4, 36, 68 and 100,
demonstrating the evolution of the network after each training loop.

We can further observe Figure 3.14 and compare outputs after the network had been
fully trained on 100 epochs. Based on these images, we can see that the networks trained
with a batch_size of 1 and 5 generated images with a higher degree of similarity with the
expected output, while the network trained with a batch_size of 50 generated blurred
images. This is most likely due to the size of the dataset that didn’t allow for enough
updates of the network weights within each epoch.

It is also interesting to note that the outputs obtained with batch_size of 5 and
10 demonstrated higher performance for generation of islands, where the entire body of
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water surrounding the main land is being accurately generated. In contrast, the output
with batch_size of 1 generated an excessive amount of grass patches that should have
been water. This phenomenon may arise from the fact that, during the training loop, the
model can access more images before updating and therefore be less inclined to generate
grass. It is also important to consider that the majority of images in the dataset do not
depict islands, which could also have affected the output.
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(a) 4-Epochs Input Edges (b) Generated Output (c) Expected Output

(d) 36-Epochs Input Edges (e) Generated Output (f) Expected Output

(g) 68-Epochs Input Edges (h) Generated Output (i) Expected Output

(j) 100-Epochs Input Edges (k) Generated Output (l) Expected Output

Figure 3.10: Training progress with Batch Size of 1 after each 32 epochs, starting from 4
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(a) 4-Epochs Input Edges (b) Generated Output (c) Expected Output

(d) 36-Epochs Input Edges (e) Generated Output (f) Expected Output

(g) 68-Epochs Input Edges (h) Generated Output (i) Expected Output

(j) 100-Epochs Input Edges (k) Generated Output (l) Expected Output

Figure 3.11: Training progress with Batch Size of 5 after each 32 epochs, starting from 4
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(a) 4-Epochs Input Edges (b) Generated Output (c) Expected Output

(d) 36-Epochs Input Edges (e) Generated Output (f) Expected Output

(g) 68-Epochs Input Edges (h) Generated Output (i) Expected Output

(j) 100-Epochs Input Edges (k) Generated Output (l) Expected Output

Figure 3.12: Training progress with Batch Size of 10 after each 32 epochs starting from 4
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(a) 4-Epochs Input Edges (b) Generated Output (c) Expected Output

(d) 36-Epochs Input Edges (e) Generated Output (f) Expected Output

(g) 68-Epochs Input Edges (h) Generated Output (i) Expected Output

(j) 100-Epochs Input Edges (k) Generated Output (l) Expected Output

Figure 3.13: Training progress with Batch Size of 50 after each 32 epochs starting from 4
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(a) Outputs with Batch Size of 1 (b) Outputs with Batch Size of 5

(c) Outputs with Batch Size of 10 (d) Outputs with Batch Size of 50

Figure 3.14: Comparison of Generated Outputs after 100 Training Epochs with Different
Batch Sizes
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3.4 Translating from Drawings

It is important to note that the generated outputs displayed in Section 3.3 only demon-
strate the model’s generative capabilities on previously seen data. As the model is already
familiar with this data, the outputs tend to be more aligned to the expected output. In
this manner, to truly assess the effectiveness of the model in solving the intended prob-
lem, generating images from hand-drawn sketches, it becomes necessary to evaluate its
performance on novel data. In the following sections I will introduce the drawing ap-
plication I developed using Pythons tkinter library, which enables the user to instantly
submit hand-drawn sketches to the Pix2Pix model and display the generated map. By the
end, I will provide my conclusions and reflections based on output observations. Figure
3.15 illustrates the workflow of the experiment, where, from the drawing application, the
sketch of a map is submitted to the Pix2Pix network, trained in section 3.3. The network
processes this sketch and returns the generated image to the application.

Figure 3.15: Diagram: submitting drawing to the AI

3.4.1 Test Environment

As explained previously, the problem I aim in solving is to transform a map sketch into its
realistic representation. Although the current implementation of the network is trained
on map edges rather than sketches, I decided to assess its effectiveness when provided
with hand-drawn inputs.

To make this process more interactive, I developed a Graphical User Interface 1 (GUI),
using Pythons tkinter library, that allows me to draw using a mouse and keyboard and
instantly feed the drawing as input to the network. The images in Figure 3.16 demonstrate
the environment, both when it is in an empty state and after I made drawings in it. The
left portion of the environment displays a canvas where I can draw using the mouse and
keyboard, while the right side shows the output from the Pix2Pix generator.

3.4.2 Test Results

Upon examining the results, it is evident that the model exhibits a high degree of effec-
tiveness in generating trees, as shown in Figures 3.16b and 3.16c.

1link to demonstration: https://youtu.be/RyXdK7xePrY
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Additionally, Figures 3.16d and 3.16e demonstrate the models’ ability to create roads,
a town square, houses and patches of land.

However, upon closer observation of Figure 3.16f, it becomes apparent that there is
room for improvement towards generating houses. If the size of the drawn house is too
large, the network struggles to comprehend its structure and ends up generating bad
patches of land. Similarly, when it was too small, the network mistook it for a squared
tree.

Additionally, Figure 3.17 displays a cherry-picked generated result after numerous
attempts, where the model correctly interpreted each drawn element.

(a) clean screen (b) one tree

(c) trees and road (d) houses and town square

(e) patches of land (f) bad houses and land

Figure 3.16: Network Outputs from Hand Drawings
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(a) Drawing Input (b) Generated Output

3.5 Training with Hand-Drawn Sketches

Building upon the success of the previous experiment, I decided to take it even further
beyond. While, previous experiments relied on clever techniques to process input data and
mimic map hand-drawn sketches, they proved less effective while dealing with images of
higher resolution. For this experiment, in order to overcome this issue, I aimed to directly
train the model using hand-drawn sketches and evaluate its effectiveness in generating
maps from them.

In the following sections, I will explain how I drew and processed these sketches. I will
go into the challenges I encountered along the way, the strategies I employed to overcome
some of them, and propose solutions for unresolved issues, which could be explored in
future iterations. Figure 3.18 presents a general overview of this experiment, where I
will manually create sketches of map asset images. These sketches, along with their
corresponding original representations, will form the Sketch-Asset dataset, which will be
used to train the Pix2Pix network.

Figure 3.18: Diagram: Hand-Drawing sketches to create Sketch-Asset dataset
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3.5.1 Creating Hand-Drawn Assets

To begin, I aimed to generate map assets: the small, more important objects, such as
rocks, trees and grass. Figure 3.19, downloaded from the internet, illustrates an example
of some of these assets in their original form. Each asset was hand-drawn using a pencil
and paper, and subsequently scanned using a printer, resulting in Figure 3.20. In order
to remove unnecessary noise from the hand-drawn sketches and make them more similar
to what I’d use as input in the testing phase, I thresholded each drawing, converting it
into a black and white image, resulting in the rightmost element depicted in Figure 3.21.

Similar to previous training iterations, I concatenated each colorized asset with its
corresponding counterpart to create the training dataset. An example taken from the
resulting dataset can be seen in Figure 3.21. However, due to the limited number of
assets available and manpower to draw these images, the dataset ended up containing
only 26 distinct asset-drawing image pairs. Consequently, an entire training phase with
100 epochs didn’t allow for the model to gather sufficient feedback over the data and
effectively update its parameters. To compensate for this, I trained the model for 600
epochs until I obtained visually satisfactory results, represented in Figure 3.22.

Figure 3.19: Map assets scraped from the internet.

3.5.2 Results

Following the training phase, I proceeded to test the Pix2Pix model using the dedicated
test environment tool that I developed and explained in Section 3.4.1. Upon examining
the outputs, it became apparent that the small dataset size had a large impact on the
results. As demonstrated in the images in Figure 3.23, the model appears to be skewed
towards generating rocks. Where we would expected a vibrant green color, we instead
observe a mossy blend of gray and green tones.
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Figure 3.20: Scanned hand-drawn map assets

Figure 3.21: Original asset and its thresholded version.

(a) Hand-Drawn Input (b) Generated Output (c) Expected Output

Figure 3.22: Hand-Drawn Input, Generated Output and Expected Output

It is worth considering that the strokes in the sketches differed from both the training
and test images, contributing to to the output discrepancy. To address this issue, a more
effective approach would involve creating the training dataset directly within the test
environment, ensuring better alignment between the training and testing inputs.
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(a) Hand Drawn Bush Input (b) Generated Bush Output

(c) Hand Drawn Leaves Input (d) Generated Leaves Output

Figure 3.23: Example Input and Outpus

3.6 Training with Larger Maps

In the previous section I left as an open issue the need for a larger dataset to improve the
model’s performance. However, due to the lack of resources for manual drawing, I decided
to address this issue from another perspective. In this experiment, I explore training the
model with maps of higher resolution that contain more information and details. My
hope is that the additional information within each image will improve training without
the need for a larger dataset. In the following sections, I will dive deeper into detailing
how I created this new dataset and by the end share my thoughts on the generated
outputs. Figure 3.24 presents a general overview of this experiment, where I will manually
create sketches of map images. These sketches, along with their corresponding original
representations, will form the Sketch-Map dataset, which will be used to train the Pix2Pix
network.
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Figure 3.24: Diagram: Hand-Drawing sketches to create Sketch-Map dataset

3.6.1 Creating Hand-Drawn Maps

One limitation of the previous experiment was the lack of images in the training dataset
and consequently lack of information for the model to train and improve upon. To over-
come this, in this experiment, instead of increasing the dataset length I focused on in-
creasing the amount of information within each map image.

To accomplish this, I searched the internet for detailed RPG maps, such as the one
shown in Figure 3.25. These maps contain many more features and details compared to
the ones from the previous experiment. In a piece of paper, placed on top of a screen
displaying the map, I traced the most important features using a pencil. After that, I
added some more details, such as leaves and water currents, resulting in the hand-drawn
map shown in Figure 3.26. Once this was done, I scanned every drawings and saved them
on disk. Like before, the original and hand-drawn images were concatenated and used to
train the model. The final dataset consisted of 16 map-drawing image pairs. Each map
image had a significantly higher resolution and more information than the assets used in
the previous experiment.

3.6.2 Training

Using the same implementation and test script as the previous experiment, I trained the
Pix2Pix model with the new map-drawing dataset. Interestingly, each training epoch
lasted slightly longer, approximately 20 seconds, when compared to the previous experi-
ment, despite the smaller dataset and inputs being cropped to have the same size. This
difference in duration could be a consequence of the higher degree of details in this exper-
iment’s training data, but further investigation is needed to explore the reasons behind
this variation. Beyond that, satisfactory results were achieved without the need for ex-
tending training for as many epochs as the previous experiment. After 100 epochs of
training, the model captured the most prominent features of Figure 3.26. Extending the
training for a longer period offered little advantage to the outputs. Figure 3.27 illustrates
the model’s evolution towards generating images throughout the training process, with
snapshots taken at every 50 epochs until epoch 300.
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Figure 3.25: Map found online.

3.6.3 Testing

Learning from previous mistakes, I wanted to ensure that the testing process aligned with
the training methodology. To achieve this, I had to create a set of brand new maps using
the same approach I used when creating the training dataset. I hand-drew a couple of
maps and scanned them using a printer. These scanned images would serve as input for
testing the network. In order to better evaluate the network’s evolution, each drawing
was incrementally modified to include additional details, such as grass patches, trees or
hills. The scanned drawings, used as input, and corresponding generated output images
can be seen in Figure 3.28.

One significant drawback that became apparent during the testing phase was the lack
of an instantaneous output feedback from the network, that prevented me from adjusting
the drawing in real-time. For example, observing Figure 3.28f, we can see that the network
successfully identified and generated the vertical road, but failed to identify the road that
runs horizontally across the image, generating a large patch of grass instead. Since both
roads only differ in width, if I had received this feedback earlier, I could’ve redrawn the
bad road to be thinner. This limitation delayed the testing process making it much less
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Figure 3.26: Hand Drawn Map.

effective.
Beyond that, an interesting phenomenon can be observed when comparing the gener-

ated outputs. The quality of the output image drastically improves once the entire input
drawing contains some level of detail. For example, when we compare Figures 3.28b and
3.28d, where only a couple of trees were additionally drawn at the bottom of the im-
age, both outputs appeared similar. However, when we compare Figures 3.28d and 3.28f,
where the entire image contained some degree of detail, the output image exhibited much
more detail and vibrant colors. This behavior can likely be explained from the fact that
every image used in the training phase contained details spread across the entire image,
leading to the network’s struggle on how to interpret empty white space.
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(a) after 50 epochs (b) after 100 epochs

(c) after 150 epochs (d) after 200 epochs

(e) after 250 epochs (f) after 300 epochs

Figure 3.27: Network Outputs from Hand Drawings
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(a) Input Drawing (b) Generated Output

(c) Input Drawing (d) Generated Output

(e) Input Drawing (f) Generated Output

Figure 3.28: Network Outputs from Hand Drawings
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3.7 Evaluation of the Models

While the previous sections’ purpose was displaying outcomes and improvements achieved
over each iteration of the experiment, this section focuses on discussing the evaluation of
the model.

As explained in 2.14, two common methods for numerically evaluating GANs are the
Inception Score (IS) and Frechet Inception Distance (FID). Both methods rely on using
a separate neural network as an auxiliary tool to compute an overall score of the GANs
output. This auxiliary network is previously trained to detect different kinds of objects
within an image, and both IS and FID leverage this network’s ability to discern objects
to output the quality of a generated fake image.

However, evaluating the Pix2Pix model using IS and FID proved challenging, specifi-
cally due to the context of fantasy map generation. The auxiliary network needed to be
trained to detect maps and map-related objects, such as trees, roads and buildings. This
would have required me to label multiple assets that could appear in the generated maps,
which would be a time consuming task.

Because of this, the evaluation of the Pix2Pix model’s outputs was conducted through
my own visual inspection. This subjective evaluation was the main driving force behind
each improvement I made in the experiment. My own accession of quality led me to train
the model longer as well as change the inputs.
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Chapter 4

Conclusions and Closing Remarks

Throughout this work I have explored the application of Generative Adversarial Networks
in image generation, specifically in the context of translating hand-drawn map sketches
into fantasy maps using the Pix2Pix model. Initially, I provided the theory required to
understand how the model worked and, by the end, I got into the development process
detailing how the model was trained, the problems I encountered, how I managed to work
around them and conclusions drawn from each iteration of the experiment.

While my initial expectation was to create highly detailed fantasy maps, the overall
results were quite satisfactory. The initial experiment served as a quick way to test the
model’s efficiency before moving on to the problem at hand. The results obtained from
this initial experience were surprisingly impressive, despite using a training dataset that
differed significantly from the proposed test input. The model demonstrated the ability
to accurately interpret and generate land, water, roads and even features that resembled
houses. It was impressive to achieve such detailed output with relatively little effort. The
success of the initial experiment played a crucial role in motivating further exploration
and refinement of the model.

Following that, I refined the model by employing a training dataset specifically tailored
for the problem at hand. Once again, I was impressed by the results. In Python, I
coded a simple script that efficiently extracted the borders from images, resulting in a
large dataset. Training was fast, and detailed images were quickly generated by the
network. To test the model, I developed a training environment that not only enhanced
the effectiveness of testing but also provided a fun experience for the user. However, in
hindsight, using a testing environment different from the one used during training and
the human error to draw straight lines had a significant impact on the model’s ability to
interpret the edges accurately, resulting in reduced image quality. Overall, I believe that
the test environment played a crucial role in preserving a sense of personal involvement
and ownership over the final output, despite the assistance of Artificial Intelligence. It
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allowed users to maintain a connection with the creative process while benefiting from
the augmentation provided by the model.

In the final experiments, where I tried to increase the degree of detail by hand drawing
high resolution assets and maps, although ambitious for such a small time, provided valu-
able insights of what the model can be trained to achieve. These limitations particularly
regard dataset size and differences of platform used in training and during testing. Given
more time and a larger development team, it would’ve been possible to scrape and draw
more images for the training phase. Additionally, with the help from a team of designers,
the maps and their corresponding sketches could’ve been directly created in the draw-
ing application, resulting in consistent assets across maps, which could’ve facilitated the
learning process for the model. Also, had I known about the difference of performance
caused by using different platforms in the testing phase, I could’ve integrated the entire
process to the same platform, which would have probably given better translations.

Despite the impact Pix2Pix had in the world of Generative networks, it is worth
noting that newer models have emerged that promise output with greater quality. One
such model is Pix2PixHD, released by NVIDIA, which synthesizes high-resolution images
with up to 2048x1024 pixels. Training the model, however, required significant time and
GPU power, which would’ve significantly delayed production of this work.

Another model, CycleGan, which was also introduced by the Pix2Pix team, offers the
possibility to solve translation tasks using an unpaired image dataset. Unlike Pix2Pix,
which requires paired images that represent the same image but in different domains, as
input during training, CycleGAN proposes a novel training process that does not require
paired representations. While this other model presented intriguing possibilities, training
it would’ve also been time consuming, prompting my decision to move away from it and
focus on Pix2Pix.

Future work in this area could explore the use of these newer models and compare
their quality and performance from the baseline results achieved with Pix2Pix. Addition-
ally, the performance of the currently used Pix2Pix network can be further improved by
creating a better training dataset, based in insight gained with the project.

In terms of evaluation methods, while my own subjective evaluation played a significant
role, future research can explore incorporating quantitative metrics, such as FID and IS,
as well as user opinions, to provide better analysis of the model’s performance.

In conclusion, I believe that my goal was partially achieved. While the generated
maps didn’t meet the same level of detail as those available on the internet, they reached
a point in which they outperform a plain hand-drawing and gameplay is possible. With
this in mind, an interesting next step would involve making this tool accessible online and
inviting players to test it on their own campaigns.
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Appendix A

The Python implementation code for both Pix2Pix and the Drawing Application as well
as the created datasets are available on GitHub. You can access the repositories at https:
//github.com/Tubar2/pix2pix and https://github.com/Tubar2/pix2pix-gui. Feel
free to explore the code!
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